Как найти второй корень квадратного уравнения если известен первый

Содержание
  1. Как решать квадратные уравнения
  2. Понятие квадратного уравнения
  3. Приведенные и неприведенные квадратные уравнения
  4. Полные и неполные квадратные уравнения
  5. Решение неполных квадратных уравнений
  6. Как решить уравнение ax 2 = 0
  7. Как решить уравнение ax 2 + с = 0
  8. Как решить уравнение ax 2 + bx = 0
  9. Как разложить квадратное уравнение
  10. Дискриминант: формула корней квадратного уравнения
  11. Алгоритм решения квадратных уравнений по формулам корней
  12. Примеры решения квадратных уравнений
  13. Формула корней для четных вторых коэффициентов
  14. Формула Виета
  15. Упрощаем вид квадратных уравнений
  16. Связь между корнями и коэффициентами
  17. Квадратное уравнение. Дискриминант. Теорема Виета.
  18. теория по математике 📈 уравнения
  19. Дискриминант
  20. Теорема Виета
  21. Решение (корни) квадратного уравнения
  22. Определение квадратного уравнения и общее понятие о его корнях
  23. Геометрический смысл решения квадратного уравнения
  24. Три случая после нахождения дискриминанта квадратного уравнения
  25. Решение полных квадратных уравнений
  26. Корни приведённого квадратного уравнения
  27. Теорема Виета
  28. Решение неполных квадратных уравнений
  29. Разложение квадратного трёхчлена на множители с применением корней квадратного уравнения
  30. Из истории решения квадратных уравнений
  31. Различные прикладные задачи на квадратные уравнения

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Как решать квадратные уравнения

Как найти второй корень квадратного уравнения если известен первый

О чем эта статья:

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Как найти второй корень квадратного уравнения если известен первый

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:#126 Урок 51. Теорема Виета. Составление квадратного уравнения, корни которого известны. Алгебра 8.Скачать

#126 Урок 51. Теорема Виета. Составление квадратного уравнения, корни которого известны. Алгебра 8.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    Как найти второй корень квадратного уравнения если известен первый

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней Как найти второй корень квадратного уравнения если известен первый

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Видео:РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминантСкачать

    РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминант

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения Как найти второй корень квадратного уравнения если известен первый, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    Как найти второй корень квадратного уравнения если известен первый

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Как найти второй корень квадратного уравнения если известен первый

    Видео:Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
    Как найти второй корень квадратного уравнения если известен первый

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Как найти второй корень квадратного уравнения если известен первый

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>Как найти второй корень квадратного уравнения если известен первый

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    Как найти второй корень квадратного уравнения если известен первый

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Как найти второй корень квадратного уравнения если известен первый

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Видео:Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравненияСкачать

    Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравнения

    Квадратное уравнение. Дискриминант. Теорема Виета.

    теория по математике 📈 уравнения

    Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

    Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

    Видео:#128 Урок 53. Теорема Виета. Нахождение коэффициентов и второго корня квадратного уравнения. АлгебраСкачать

    #128 Урок 53. Теорема Виета. Нахождение коэффициентов и второго корня квадратного уравнения. Алгебра

    Дискриминант

    Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

    Нахождение корней квадратного уравнения

    Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

    D=b 2 –4ac

      Если D>0, то уравнение имеет два различных

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

    Как найти второй корень квадратного уравнения если известен первыйПример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

    D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Как найти второй корень квадратного уравнения если известен первый

    Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    Теорема Виета

    Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

    Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

    Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

    Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

    Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

    Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

    Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

    Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

    Данное уравнение является квадратным. Но в его условии присутствует квадратный корень, что усложняет нам задачу для нахождения его корней, в том плане, что необходимо увидеть, какие же ограничения на переменную х здесь будут.

    Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного корня): ограничение на х: 5 − х ≥ 0

    Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

    Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

    х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

    Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

    х 2 − 2 х − 24 = 0

    Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

    Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Видео:Математика Один из корней уравнения 3x^2 +5x +2m =0 равен -1. Найдите второй корень.Скачать

    Математика Один из корней уравнения  3x^2 +5x +2m =0  равен -1. Найдите второй корень.

    Решение (корни) квадратного уравнения

    Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

    Определение квадратного уравнения и общее понятие о его корнях

    Квадратным уравнением называется уравнение вида ax² + bx + c = 0 , где x — переменная, которая в уравнении присутствует в квадрате, a, b, c — некоторые числа, причём a ≠ 0 .

    Например, квадратным является уравнение

    В квадратном уравнении ax² + bx + c = 0 коэффициент a называют первым коэффициентом, b — вторым коэффициентом, c — свободным членом.

    Уравнения вида ax² + bx = 0 ,

    называются неполными квадратными уравнениями.

    Найти корни квадратного уравнения значит решить квадратное уравнение.

    Для вычисления корней квадратного уравния служит выражение b² — 4ac , которое называется дискриминантом квадратного уравнения и обозначается буквой D.

    Корни квадратного уравнения имеют следующие сферы применения:

    — для разложении квадратного трёхлена на множители, что, в свою очередь, является приёмом упрощения выражений (например, сокращения дробей, вынесение за скобки общего знаменателя и т.д.) в частности, при нахождении пределов, производных и интегралов;

    — для решения задач на соотношения параметров меняющегося объекта (корни квадратного уравнения, чаще всего один, являются обычно конечным решением).

    Видео:ПРОДВИНУТАЯ ТЕОРЕМА ВИЕТА #математика #егэ #огэ #уравнение #виета #теорема #подготовкакегэ #shortsСкачать

    ПРОДВИНУТАЯ ТЕОРЕМА ВИЕТА #математика #егэ #огэ #уравнение #виета #теорема #подготовкакегэ #shorts

    Геометрический смысл решения квадратного уравнения

    График квадратичного трёхлена ax² + bx + c — левой части квадратного уравнения — представляет собой параболу, ось симметрии которой параллельна оси 0y . Число точек пересечения параболы с осью 0x определяет число корней квадратного уравнения. Если точек пересечения две, то квадратное уравнение имеет два действительных корня, если точка пересечения одна, то квадратное уравнение имеет один действительный корень, если парабола не пересекает ось 0x , то квадратное уравнение не имеет действительных корней. На рисунке ниже изображены три упомянутых случая.

    Как найти второй корень квадратного уравнения если известен первый

    Как видно на рисунке, красная парабола пересекает ось 0x в двух точках, зелёная — в одной точке, а жёлтая парабола не имеет точек пересечения с осью 0x .

    Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Три случая после нахождения дискриминанта квадратного уравнения

    1. Если дискриминант больше нуля (Как найти второй корень квадратного уравнения если известен первый), то квадратное уравнение имеет два различных действительных корня.

    Они вычисляются по формулам:

    Как найти второй корень квадратного уравнения если известен первыйи

    Как найти второй корень квадратного уравнения если известен первый.

    Часто пишется так: Как найти второй корень квадратного уравнения если известен первый.

    2. Если дискриминант равен нулю (Как найти второй корень квадратного уравнения если известен первый), то квадратное уравнение имеет только один действительный корень, или, что то же самое — два равных действительных корня, которые равны Как найти второй корень квадратного уравнения если известен первый.

    3. Если дискриминант меньше нуля (Как найти второй корень квадратного уравнения если известен первый), то квадратное уравнение не имеет действительных корней, а имеет комплексные корни, но нахождение комплексных корней в этой статье рассматривать не будем. В общем случае правильным решением является констатация того, что квадратное уравнение не имеет действительных корней.

    Пример 1. Определить, сколько действительных корней имеет квадратное уравнение:

    Как найти второй корень квадратного уравнения если известен первый.

    Решение. Найдём дискриминант:

    Как найти второй корень квадратного уравнения если известен первый.

    Дискриминант больше нуля, следовательно, квадратное уравнение имеет два действительных корня.

    Путём преобразования в квадратное уравнение следует решать и дробные уравнения, в которых хотя бы одно из слагаемых — дробь, в знаменателе которой присутствует неизвестное, например, Как найти второй корень квадратного уравнения если известен первый. О том, как это делается — в материале Решение дробных уравнений с преобразованием в квадратное уравнение.

    Пример 2. Определить, сколько действительных корней имеет квадратное уравнение:

    Как найти второй корень квадратного уравнения если известен первый.

    Решение. Найдём дискриминант:

    Как найти второй корень квадратного уравнения если известен первый.

    Дискриминант равен нулю, следовательно, квадратное уравнение имеет один действительный корень.

    Пример 3. Определить, сколько действительных корней имеет квадратное уравнение:

    Как найти второй корень квадратного уравнения если известен первый.

    Решение. Найдём дискриминант:

    Как найти второй корень квадратного уравнения если известен первый.

    Дискриминант меньше нуля, следовательно, квадратное уравнение не имеет действительных корней.

    Видео:#127 Урок 52. Теорема Виета. Составление квадратного уравнения, корни которого не известны.Скачать

    #127 Урок 52. Теорема Виета. Составление квадратного уравнения, корни которого не известны.

    Решение полных квадратных уравнений

    Находить корни квадратного уравнения требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

    Пример 4. Найти корни квадратного уравнения:

    Как найти второй корень квадратного уравнения если известен первый.

    В примере 1 нашли дискриминант этого уравнения:

    Как найти второй корень квадратного уравнения если известен первый,

    Решение квадратного уравнения найдём по формуле для корней:

    Как найти второй корень квадратного уравнения если известен первый

    Пример 5. Найти корни квадратного уравнения:

    Как найти второй корень квадратного уравнения если известен первый.

    В примере 2 нашли дискриминант этого уравнения:

    Как найти второй корень квадратного уравнения если известен первый.

    Применим формулу корней квадратного уравнения Как найти второй корень квадратного уравнения если известен первый. Отсюда Как найти второй корень квадратного уравнения если известен первый, Как найти второй корень квадратного уравнения если известен первый. Найденные корни квадратного уравнения равны друг другу, а это значит, что уравнение имеет единственный корень: Как найти второй корень квадратного уравнения если известен первый

    Находить корни квадратного уравнения требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

    Корни приведённого квадратного уравнения

    Пусть дано квадратное уравнение Как найти второй корень квадратного уравнения если известен первый. Так как Как найти второй корень квадратного уравнения если известен первый, то разделив обе части данного уравнения на a, получим уравнение Как найти второй корень квадратного уравнения если известен первый. Полагая, что Как найти второй корень квадратного уравнения если известен первыйи Как найти второй корень квадратного уравнения если известен первый, приходим к уравнению Как найти второй корень квадратного уравнения если известен первый, в котором первый коэффициент равен 1. Такое уравнение называется приведённым.

    Формула корней приведённого уравнения имеет вид:

    Как найти второй корень квадратного уравнения если известен первый.

    Видео:Теорема Виета. 8 класс.Скачать

    Теорема Виета. 8 класс.

    Теорема Виета

    Существуют формулы, связывающие корни квадратного уравнения с его коэффициентами. Они впервые были получены французским математиком Ф.Виетом.

    Теорема Виета. Если квадратное уравнение ax² + bx + c = 0 имеет действительные корни, то их сумма равна — b/a , а произведение равно с/a :

    Как найти второй корень квадратного уравнения если известен первый

    Следствие. Если приведённое квадратное уравнение x² + px + q = 0 имеет действительные корни Как найти второй корень квадратного уравнения если известен первыйи Как найти второй корень квадратного уравнения если известен первый, то

    Как найти второй корень квадратного уравнения если известен первый

    Пояснение формул: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Следовательно, теорему Виета можно применять и для поиска корней приведённого квадратного уравнения.

    Пример 6. Написать приведённое квадратное уравнение, корнями которого являются числа 1 и -3.

    Иначе говоря, надо найти числа p и q такие, чтобы квадратное уравнение

    Как найти второй корень квадратного уравнения если известен первый

    имело корни Как найти второй корень квадратного уравнения если известен первыйи Как найти второй корень квадратного уравнения если известен первый.

    По формулам Виета Как найти второй корень квадратного уравнения если известен первый, Как найти второй корень квадратного уравнения если известен первый. Требуемое в условии задачи уравнение имеет вид Как найти второй корень квадратного уравнения если известен первый

    Видео:8 класс. Квадратное уравнение и его корни. Алгебра.Скачать

    8 класс. Квадратное уравнение и его корни. Алгебра.

    Решение неполных квадратных уравнений

    Пример 7. Решить квадратное уравнение Как найти второй корень квадратного уравнения если известен первый.

    Решение. Чтобы решить данное неполное квадратное уравнение, разложим его левую часть на множители. Получим

    Как найти второй корень квадратного уравнения если известен первый

    Произведение Как найти второй корень квадратного уравнения если известен первыйравно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю: Как найти второй корень квадратного уравнения если известен первыйили Как найти второй корень квадратного уравнения если известен первый. Решая уравнение Как найти второй корень квадратного уравнения если известен первый, находим Как найти второй корень квадратного уравнения если известен первый.

    Следовательно, произведение Как найти второй корень квадратного уравнения если известен первыйобращается в нулю при Как найти второй корень квадратного уравнения если известен первыйи при Как найти второй корень квадратного уравнения если известен первый. Поэтому числа 0 и 1/2 являются корнями неполного квадратного уравнения Как найти второй корень квадратного уравнения если известен первый.

    Пример 8. Решить квадратное уравнение Как найти второй корень квадратного уравнения если известен первый.

    Решение. Чтобы решить данное неполное квадратное уравнение, перенесём в его правую часть свободный член с противоположным знаком и разделим обе части уравнения на 3. Получим уравнение

    Как найти второй корень квадратного уравнения если известен первый.

    Так как Как найти второй корень квадратного уравнения если известен первый, то уравнение Как найти второй корень квадратного уравнения если известен первыйне имеет действительных корней. Следовательно, не имеет действительных корней и эквивалентное ему неполное квадратное уравнение Как найти второй корень квадратного уравнения если известен первый.

    Видео:ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ. §20 алгебра 8 классСкачать

    ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ. §20  алгебра 8 класс

    Разложение квадратного трёхчлена на множители с применением корней квадратного уравнения

    Если известны корни квадратного уравнения, то трёхчлен, представляющий собой левую часть уравнения, можно разложить на множители по следующей формуле:

    Как найти второй корень квадратного уравнения если известен первый.

    Этот приём часто используется для упрощения выражений, особенно сокращения дробей.

    Пример 9. Упростить выражение:

    Как найти второй корень квадратного уравнения если известен первый.

    Решение. Числитель данной дроби можем рассматривать как квадратный трёхчлен в отношении x и разложить его на множители, предварительно найдя его корни. Найдём дискриминант квадратного уравнения:

    Как найти второй корень квадратного уравнения если известен первый.

    Корни квадратного уравнения будут следующими:

    Как найти второй корень квадратного уравнения если известен первый.

    Разложим квадратный многочлен на множители:

    Как найти второй корень квадратного уравнения если известен первый.

    Упростили выражение, проще не бывает:

    Как найти второй корень квадратного уравнения если известен первый.

    Пример 10. Упростить выражение:

    Как найти второй корень квадратного уравнения если известен первый.

    Решение. И числитель, и знаменатель — квадратные трёхчлены. Значит, их можно разложить на множители, предварительно найдя корни соответствующих квадратных уравнений. Находим дискриминант первого квадратного уравнения:

    Как найти второй корень квадратного уравнения если известен первый.

    Корни первого квадратного уравнения будут следующими:

    Как найти второй корень квадратного уравнения если известен первый.

    Находим дискриминант второго квадратного уравнения:

    Как найти второй корень квадратного уравнения если известен первый.

    Так как дискриминант равен нулю, второе квадратное уравнение имеет два совпадающих корня:

    Как найти второй корень квадратного уравнения если известен первый.

    Подставим корни квадратных уравнений, разложим числитель и знаменатель на множители и получим:

    Как найти второй корень квадратного уравнения если известен первый.

    Упрощать выражения путём решения квадратных уравнений требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

    Разумеется, квадратного трёхчлена может может и не быть в выражении в первоначальном виде, он может быть получен в процессе предварительных преобразований выражения.

    Видео:Квадратный корень. 8 класс.Скачать

    Квадратный корень. 8 класс.

    Из истории решения квадратных уравнений

    Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших дней выводов этой формулы принажлежит индийскому математику Брахмагупте (около 598 г.). Среднеазиатский учёный аль-Хорезми (IX в.) получил эту формулу методом выделения полного квадрата с помощью геометрической иллюстрации. Суть его рассуждений видна из рисунка ниже (он рассматривает уравнение x² + 10x = 39 ).

    Как найти второй корень квадратного уравнения если известен первый

    Площадь большого квадрата равна (x + 5)² . Она складывается из площади x² + 10x заштрихованной фигуры, равной левой части рассматриваемого уравнения, и площади четырёх квадратов со стороной 5/2 , равной 25. Получается следующее уравнение и его решение:

    Как найти второй корень квадратного уравнения если известен первый

    Различные прикладные задачи на квадратные уравнения

    Пример 11. Отрезок ткани стоит 180 у.ед. Если бы ткани в отрезке было на 2,5 м больше и цена отрезка оставалась бы прежней, то цена 1 м ткани была бы на 1 у.ед. меньше. Сколько ткани в отрезке?

    Решение. Примем количество ткани в отрезке за x и получим уравнение:

    Как найти второй корень квадратного уравнения если известен первый

    Приведём обе части уравнения к общему знаменателю:

    Как найти второй корень квадратного уравнения если известен первый

    Произведём дальнейшие преобразования:

    Как найти второй корень квадратного уравнения если известен первый

    Получили квадратное уравнение, которое и решим:

    Как найти второй корень квадратного уравнения если известен первый

    Как найти второй корень квадратного уравнения если известен первый

    Ясно, что количество ткани не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь один корень — положительный.

    Ответ: в отрезке 20 м ткани.

    Пример 12. Товар, количество которого 187,5 кг, взвешивают в одинаковых ящиках. Если в каждом ящике количество товара уменьшить на 2 кг, то следовало бы использовать на 2 ящика больше и при этом 2 кг товара остались бы невзвешенными. Сколько кг товара взвешивают в каждом ящике?

    Решение. Примем за x количество товара, взвешиваемого в одном ящике. Тогда получим уравнение:

    Как найти второй корень квадратного уравнения если известен первый

    Приведём обе части уравнения к общему знаменателю, произведём дальнейшие преобразования и получим квадратное уравнение. Процесс записывается так:

    Как найти второй корень квадратного уравнения если известен первый

    Как найти второй корень квадратного уравнения если известен первый

    Найдём корни квадратного уравнения:

    Как найти второй корень квадратного уравнения если известен первый

    Количество товара не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь положительный корень.

    Ответ: в одном ящике взвешивают 12,5 кг ткани.

    Поделиться или сохранить к себе: