Как найти вектор параллельный прямой заданной уравнением

2.2.3. Как найти направляющий вектор
по общему уравнению прямой?

Если прямая задана общим уравнением Как найти вектор параллельный прямой заданной уравнением, то вектор Как найти вектор параллельный прямой заданной уравнениемявляется направляющим вектором данной прямой.

Примеры нахождения направляющих векторов прямых:
Как найти вектор параллельный прямой заданной уравнением

Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить: так, уравнение Как найти вектор параллельный прямой заданной уравнениемзадаёт прямую, которая параллельна оси Как найти вектор параллельный прямой заданной уравнениеми координаты полученного направляющего вектора Как найти вектор параллельный прямой заданной уравнениемудобно разделить на –2, получая в точности базисный вектор Как найти вектор параллельный прямой заданной уравнениемв качестве направляющего вектора. Аналогично, уравнение Как найти вектор параллельный прямой заданной уравнениемзадаёт прямую, параллельную оси Как найти вектор параллельный прямой заданной уравнением, и, разделив координаты вектора Как найти вектор параллельный прямой заданной уравнениемна 5, получаем направляющий вектор Как найти вектор параллельный прямой заданной уравнением.

Читателям с низким уровнем подготовки рекомендую постоянно выполнять чертежи, чтобы лучше понимать мои объяснения!

Теперь выполним проверку Задачи 61. Решение уехало вверх, поэтому напоминаю, что в ней мы составили уравнение прямой Как найти вектор параллельный прямой заданной уравнениемпо точке Как найти вектор параллельный прямой заданной уравнениеми направляющему вектору Как найти вектор параллельный прямой заданной уравнением. Проверка состоит в двух действиях:

Во-первых, по уравнению прямой Как найти вектор параллельный прямой заданной уравнениемвосстанавливаем её направляющий вектор: Как найти вектор параллельный прямой заданной уравнением– всё нормально, получили исходный вектор (в ряде случаев может получиться коллинеарный исходному вектор, и это несложно заметить по пропорциональности соответствующих координат).

Во-вторых, координаты точки Как найти вектор параллельный прямой заданной уравнениемдолжны удовлетворять уравнению Как найти вектор параллельный прямой заданной уравнением. Подставляем их в уравнение:
Как найти вектор параллельный прямой заданной уравнением
Как найти вектор параллельный прямой заданной уравнением– получено верное равенство, чему мы очень рады.

Вывод: задание выполнено правильно.

Задача 62

Составить уравнение прямой по точке Как найти вектор параллельный прямой заданной уравнениеми направляющему вектору Как найти вектор параллельный прямой заданной уравнением

Это задача для самостоятельного решения. И проверка, проверка, проверка!

Старайтесь всегда (если это возможно) выполнять проверку на черновике.
Глупо допускать ошибки там, где их 100%-но можно избежать!

В том случае, если одна из координат направляющего вектора равна нулю, поступают очень просто:

Задача 63

Составить уравнение прямой по точке Как найти вектор параллельный прямой заданной уравнениеми направляющему вектору Как найти вектор параллельный прямой заданной уравнением.

Решение: формула Как найти вектор параллельный прямой заданной уравнениемне годится, так как знаменатель правой части равен нулю. Но выход прост! Используя свойства пропорции, перепишем уравнение в виде Как найти вектор параллельный прямой заданной уравнением, и дальнейшее покатилось по глубокой колее:
Как найти вектор параллельный прямой заданной уравнением
переставим части местами:
Как найти вектор параллельный прямой заданной уравнением

Ответ: Как найти вектор параллельный прямой заданной уравнением

Проверка:

1) Восстановим направляющий вектор найденной прямой Как найти вектор параллельный прямой заданной уравнением:
Как найти вектор параллельный прямой заданной уравнением– полученный вектор коллинеарен исходному направляющему вектору Как найти вектор параллельный прямой заданной уравнением.

2) Подставим координаты точки Как найти вектор параллельный прямой заданной уравнениемв уравнение Как найти вектор параллельный прямой заданной уравнением:
Как найти вектор параллельный прямой заданной уравнением
Как найти вектор параллельный прямой заданной уравнением– получено верное равенство, значит, точка Как найти вектор параллельный прямой заданной уравнениемудовлетворяет уравнению.

Вывод: задание выполнено правильно

Возникает вопрос: зачем маяться с формулой Как найти вектор параллельный прямой заданной уравнением, если существует универсальная версия Как найти вектор параллельный прямой заданной уравнением, которая сработает в любом случае?

Причин две. Во-первых, формула в виде дроби Как найти вектор параллельный прямой заданной уравнениемгораздо лучше запоминается. А во-вторых, недостаток универсальной формулы Как найти вектор параллельный прямой заданной уравнениемсостоит в том, что здесь повышается риск запутаться при подстановке координат.

Задача 64

Составить уравнение прямой по точке Как найти вектор параллельный прямой заданной уравнениеми направляющему вектору Как найти вектор параллельный прямой заданной уравнением, выполнить проверку.

Это задача для самостоятельного решения. Кстати, проверку можно выполнять и графически – решили задачу и изобразили всё на чертеже. Правда, такой способ бывает неудобен или трудновыполнИм, и поэтому всё-таки «рулит» аналитика.

Видео:Направляющий и нормальный вектор прямой на плоскости | Векторная алгебраСкачать

Направляющий и нормальный вектор прямой на плоскости | Векторная алгебра

Направляющий вектор прямой

Вы будете перенаправлены на Автор24

Направляющим вектором прямой называется вектор, параллельный прямой, которую он определяет или совпадающий с ней.

Рассмотрим прямую $L$, заданную точкой $M_0$, лежащей на ней, и направляющим вектором $overline$ с координатами $(l;m)$, при этом вектор $overline$ — ненулевой. Обозначим на прямой произвольную точку $M$ с координатами $(x, y)$, не совпадающую с точкой $M_0$. Радиус-векторы этих точек назовём $overline$ и $overline$. Вектор $overline$ при этом будет колинеарен вектору $overline$.

Вектор $overline$ можно выразить через сумму векторов $overline$:

$overline = overline + overlineleft(1right).$

Вектор $overline$ лежит на прямой $L$, поэтому он по условию является параллельным направляющему вектору $overline$ и связан с ним соотношением $overline= toverlineleft(2right)$, где $t$ — множитель, являющийся скалярной величиной и зависящий от позиции точки $M$ на прямой.

Рисунок 1. Направляющий вектор прямой L

Учитывая равенство $(2)$, формулу $(1)$ можно переписать следующим образом:

$overline = overline + toverlineleft(3right)$

Данное равенство носит название векторного уравнения прямой.

Возможны следующие варианты задания уравнения прямой на плоскости:

  • Общее уравнение прямой;
  • Уравнение с угловым коэффициентом;
  • Через параметрические уравнения;
  • Каноническое уравнение;
  • С помощью двух точек, через которые проходит прямая.

Для каждого из этих вариантов подходит свой способ нахождения направляющего вектора.

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Направляющий вектор из канонического уравнения прямой и через две точки

Готовые работы на аналогичную тему

Каноническое уравнение прямой выглядит так:

Из канонического уравнения выразить координаты направляющего вектора проще всего: достаточно выписать знаменатели из уравнения следующим образом:

Уравнение прямой, проходящей через 2 точки, имеет вид, очень похожий на каноническое уравнение:

$frac= fracleft(5right)$, где $(x_1; y_1)$ и $(x_2; y_2)$ — координаты точек, через которые проходит прямая.

В этом случае координаты направляющего вектора $overline$ равны $((x_2 – x_1); (y_2-y_1))$.

Даны две точки $(5; 10)$ и $(2;1)$. Составьте уравнение прямой и выпишите координаты направляющего вектора.

Подставим координаты данных точек в уравнение $(5)$ и получим:

Ответ: координаты направляющего вектора $overline$ равны $(3;9)$.

Видео:Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать

Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/

Направляющий вектор из параметрических уравнений

Параметрические уравнения имеют следующий вид: $begin x=x_0 + lt \ y=y_0 + mt end$

Для того чтобы выразить координаты направляющего вектора из параметрических уравнений, нужно выписать коэффициенты, стоящие перед параметром $t$, т.е. $overline=(l; m)$.

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Координаты направляющего вектора из общего уравнения

Общее уравнение имеет следующий вид:

$Ax + By + C = 0left(6right)$

Для того чтобы получить координаты направляющего вектора, нужно от общего уравнения прямой перейти к каноническому.

Сделаем это в общей форме.

Сначала перенесём часть $By + C$ в правую часть:

Теперь разделим всё на $A$:

А после этого всё уравнение разделим на $B$:

Из вышеизложенного следует, что координаты направляющего вектора $overline$ будут равны $(B; -A)$.

Дано общее уравнение прямой $6x-7y + 5 = 0$. Получите направляющий вектор для данной прямой.

Воспользуемся уравнением прямой $(7)$. Из этого уравнения получается, что координаты направляющего вектора равны $(6;7)$.

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Координаты направляющего вектора из уравнения с угловым коэффициентом

Уравнение с угловым коэффициентом имеет вид:

Для того чтобы получить из него координаты направляющего вектора, необходимо сначала привести его к общему виду, для этого переносим всё в левую часть:

Затем нужно воспользоваться алгоритмом для общего уравнения.

Уравнение с угловым коэффициентом, приведённое к каноническому, выглядит так:

то есть координаты направляющего вектора в данном случае будут $overline= (1;k)$.

Видео:12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Направляющий вектор прямой, координаты направляющего вектора прямой

С понятием прямой линии тесно связано понятие ее направляющего вектора. Часто в задачах бывает удобнее рассматривать его вместо самой прямой. В рамках данного материала мы разберем, что же такое направляющий вектор прямой в пространстве и на плоскости, и расскажем, для чего можно его использовать.

В первом пункте мы сформулируем определение и покажем основные понятия на иллюстрациях, дополнив их конкретными примерами направляющего вектора. Далее мы посмотрим, как прямая и направляющие векторы взаимодействуют в прямоугольной системе координат и как можно вычислить координаты этого вектора, если мы знаем уравнение прямой. Все правила, как всегда, будут проиллюстрированы примерами решений задач.

Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Что такое направляющий вектор прямой

Для того чтобы понять эту тему, нам нужно хорошо представлять, что такое вообще прямая и как она может размещаться в пространстве и на плоскости. Кроме того, важно вспомнить ранее изученное понятие вектора. Об этом мы уже писали в отдельном материале. Если нужно, найдите и перечитайте эти статьи.

Сформулируем, что такое направляющий вектор.

Направляющим вектором прямой является любой вектор, не равный нулю, который размещается на данной прямой или же на прямой, параллельной ей.

Как найти вектор параллельный прямой заданной уравнением

Получается, что у каждой прямой есть бесконечное множество направляющих векторов. При этом все они будут являться коллинеарными в силу озвученного определения, ведь они лежат на одной прямой или параллельной ей другой прямой. Выходит, что если a → является направляющий вектором прямой a , то другой направляющий вектор мы можем обозначить как t · a → при любом значении t , соответствующем действительному числу.

Также из определения выше можно сделать вывод, что направляющие векторы двух параллельных прямых будут совпадать: если прямые a и a 1 являются параллельными, то вектор a → будет направляющим и для a , и для a 1 .

Третий вывод, следующий из определения: если у нас есть направляющий вектор прямой a , то он будет перпендикулярным по отношению к любому нормальному вектору той же прямой.

Приведем пример направляющего вектора: в прямоугольной системе координат для осей O x , O y и O z направляющими будут координатные векторы i → , j → и k → .

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Как вычислить координаты направляющего вектора по уравнениям прямой

Допустим, что у нас есть некая прямая с направляющими векторами, лежащая в прямоугольной системе координат. Сначала мы разберем случай с плоской декартовой системой O x y , а потом с системой O x y z , расположенной в трехмерном пространстве.

1. Прямую линию в O x y можно описать с помощью уравнения прямой на плоскости. В этом случае координаты направляющих векторов будут соответствовать направляющим векторам исходной прямой. А если нам известно уравнение прямой, как вычислить координаты ее направляющего вектора? Это легко сделать, если мы имеем дело с каноническим или параметрическим уравнением.

Допустим, у нас есть канонический случай уравнения, которое имеет вид x — x 1 a x = y — y 1 a y . С его помощью на плоскости задана прямая с направляющим вектором a → = ( a x , a y ) .

Чтобы вычислить координаты направляющего вектора, нам нужно взять числа из знаменателя канонического уравнения прямой.

Приведем пример задачи.

В прямоугольной системе координат задана прямая, которую можно описать уравнением x — 1 4 = y + 1 2 — 3 . Вычислите координаты одного из направляющих векторов прямой.

Решение

Из уравнения мы можем сразу взять координаты направляющего вектора. Берем числа в знаменателях и записываем: 4 , — 3 . Это и будет нужный нам ответ.

Ответ: 4 , — 3 .

Если же прямая описана уравнением параметрического типа, то нам нужно смотреть на коэффициенты при параметре. Они будут соответствовать координатам нужного нам направляющего вектора.

У нас есть прямая, которую можно описать с помощью системы параметрических уравнений x = — 1 y = 7 — 5 · λ , при этом λ ∈ R . Найдите координаты направляющих векторов.

Решение

Для начала перепишем данные параметрические уравнения в виде x = — 1 + 0 · λ y = 7 — 5 · λ . Посмотрим на коэффициенты. Они сообщат нам нужные координаты направляющего вектора – a → = ( 0 , 5 ) . Учитывая, что все направляющие векторы одной прямой будут коллинеарны, мы можем задать их в виде t · a → или 0 , — 5 · t , где t может быть любым действительным числом. О том, как проводить действия с векторами в координатах, мы писали в отдельной статье.

Ответ: 0 , — 5 · t , t ∈ R , t ≠ 0

Теперь разберем случай, как найти координаты вектора, если прямая задана общим уравнением вида A x + B y + C = 0 . Если A = 0 , то исходное уравнение можно переписать как B y + C = 0 . Оно определяет прямую, которая будет параллельна оси абсцисс. Значит, в качестве ее направляющего вектора мы можем взять координатный вектор i → = 1 , 0 .

А если B = 0 , то уравнение прямой мы можем записать как A x + C = 0 . Описываемая им прямая будет параллельна оси ординат, поэтому ее координатный вектор j → = 0 , 1 также будет направляющим. Рассмотрим конкретную задачу.

У нас есть прямая, заданная при помощи общего уравнения x — 2 = 0 . Найдите координаты любого направляющего вектора.

Решение

В прямоугольной системе координат исходное уравнение будет соответствовать прямой, параллельной оси ординат. Значит, мы можем взять координатный вектор j → = ( 0 , 1 ) . Он будет для нее направляющим.

Ответ: ( 0 , 1 )

А как быть в случае, если ни один коэффициент в A x + B y + C = 0 не будет равен 0? Тогда мы можем использовать несколько разных способов.

1. Мы можем переписать основное уравнение так, чтобы оно превратилось в каноническое. Тогда координаты вектора можно будет взять из его значений.

2. Можно вычислить отдельно начальную и конечную точку направляющего вектора. Для этого надо будет взять координаты двух любых несовпадающих точек исходной прямой.

3. Третий способ заключается в вычислении координат любого вектора, который будет перпендикулярен нормальному вектору этой прямой n → = A , B .

Самым простым является первый подход. Проиллюстрируем его на примере задачи.

Есть прямая на плоскости, заданная уравнением 3 x + 2 y — 10 = 0 . Запишите координаты любого направляющего вектора.

Решение

Перепишем исходное уравнение в каноническом виде. Сначала перенесем все слагаемые из левой части, кроме 3 x, в правую с противоположным знаком. У нас получится:

3 x + 2 y — 10 = 0 ⇔ 3 x = — 2 y + 10

Получившееся равенство преобразовываем и получаем:

3 x = — 2 y + 10 ⇔ 3 x = — 2 ( y — 5 ) ⇔ x — 2 = y — 5 3

Отсюда мы уже можем вывести координаты нужного нам направляющего вектора: -2 , 3

К общему виду легко свести и такие типы уравнений, как уравнение прямой в отрезках x a + y b = 1 и уравнение прямой с угловым коэффициентом y = k · x + b , так что если они встретились вам в задаче на нахождение координат направляющего вектора, то можно также использовать этот подход.

Далее мы разберем, как найти эти координаты, если прямая у нас задана не в плоскости, а в пространстве.

Вектор a → = ( a x , a y , a z ) является направляющим для прямой, выраженной с помощью:

1) канонического уравнения прямой в пространстве x — x 1 a x = y — y 1 a y = z — z 1 a z

2) параметрического уравнения прямой в пространстве x — x 1 a x = y — y 1 a y = z — z 1 a z

Таким образом, для вычисления координат направляющего вектора нужно взять числа из знаменателей или коэффициентов при параметре в соответствующем уравнении.

Рассмотрим конкретную задачу.

Прямая в пространстве задана уравнением вида x — 1 4 = y + 1 2 0 = z — 3 . Укажите, какие координаты будет иметь направляющий вектор данной прямой.

Решение

В каноническом уравнении необходимые числа видны сразу в знаменателях. Получается, что ответом будет вектор с координатами 4 , 0 , — 3 . Координаты всех направляющих векторов данной прямой можно записать в виде 4 · t , 0 , — 3 · t при условии, что t является действительным числом.

Ответ: 4 · t , 0 , — 3 · t , t ∈ R , t ≠ 0

Вычислите координаты любого направляющего вектора для прямой, которая задана в пространстве с помощью параметрического уравнения x = 2 y = 1 + 2 · λ z = — 4 — λ .

Решение

Перепишем данные уравнения в виде x = 2 + 0 · λ y = 1 + 2 · λ z = — 4 — 1 · λ .

Из этой записи можно вычленить координаты нужного нам вектора – ими будут коэффициенты перед параметром.

Разберем еще один случай. Как вычислить нужные координаты, если прямая задана уравнением двух пересекающихся плоскостей вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 ?

Есть два способа. Можно записать это уравнение в параметрическом виде, где будут видны нужные координаты. Но можно использовать и другой способ. Объясним его.

Вспомним, что такой нормальный вектор плоскости. Он по определению будет лежать на прямой, перпендикулярной исходной плоскости. Значит, любой направляющий вектор прямой, которая в ней находится, будет перпендикулярен ее любому нормальному вектору.

Направляющий вектор прямой, образованной пересечением двух плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , будет перпендикулярен нормальным векторам n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) . То есть в качестве направляющего вектора мы может взять произведение векторов n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) .

n 1 → × n 2 → = i → j → k → A 1 B 1 C 1 A 2 B 2 C 2 — это и есть направляющий вектор прямой, по которой пересекаются исходные плоскости.

Решим задачу, в которой применяется этот подход.

Запишите координаты направляющего вектора прямой, выраженной с помощью уравнения x + 2 y + 3 z — 1 = 0 2 x + 4 y — 4 z + 5 = 0 .

Решение

Возьмем произведение двух нормальных векторов плоскостей x + 2 y + 3 z — 1 = 0 и 2 x + 4 y — 4 z + 5 = 0 . У них следующие координаты: 1 , 2 , 3 и 2 , 4 , — 4 .

У нас получится:

n 1 → × n 2 → = i → j → k → 1 2 3 2 4 — 4 = i → · 2 · ( — 4 ) + j → · 3 · 2 + k → · 1 · 4 — — k → · 2 · 2 — i → · 3 · 4 — j → · 1 · ( — 4 ) = — 20 · i → + 10 · j → + 0 · k →

Выходит, что вектор n 1 → × n 2 → = — 20 · i → + 10 · j → + 0 · k → ⇔ n 1 → × n 2 → = — 20 , 10 , 0 – это и есть нужный нам направляющий вектор прямой.

Ответ: — 20 , 10 , 0

В конце статьи отметим, что умение вычислять направляющий вектор пригодится для решения многих задач, таких, как сопоставление двух прямых, доказательство их параллельности и перпендикулярности, вычисление угла между пересекающимися или скрещивающимися прямыми и др.

📸 Видео

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Найти точку пересечения прямой и плоскостиСкачать

Найти точку пересечения прямой и плоскости

Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Видеоурок "Нормальное уравнение прямой"Скачать

Видеоурок "Нормальное уравнение прямой"

Видеоурок "Общее уравнение прямой"Скачать

Видеоурок "Общее уравнение прямой"

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам
Поделиться или сохранить к себе: