Как найти уравнение перпендикулярных колебаний

Видео:МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Сложение гармонических колебаний

Если колебательная система одновременно участвует в двух (или более) независимых колебательных движениях, возникает задача — найти результирующее колебание. В случае однонаправленных колебаний под этим понимается нахождение уравнения результирующего колебания; в случае взаимно перпендикулярных колебаний — нахождение траектории результирующего колебания.

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Метод векторных диаграмм

Рассмотрим вращающийся против часовой стрелки с постоянной угловой скоростью w вектор А. Очевидно, что угол j = w t + j0 где j0 — начальный угол.

Как найти уравнение перпендикулярных колебаний

Проекции вектора А на оси координат запишутся:

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Видно, что проекции вращающегося вектора на оси координат по форме совпадают с уравнением гармонических колебаний, если угловой скорости вектора сопоставить угловую частоту колебаний, а начальному углу — начальную фазу.

Проводя аналогию дальше, можно сказать, что результат сложения двух однонаправленных колебаний можно получить следующим путем: необходимо сложить два вектора, а проекции суммарного вектора на оси координат будут являться уравнениями результирующего колебания. Рассмотрим этот метод на примере сложения двух колебаний с произвольными частотами. Пусть наше тело участвует в двух совпадающих по направлению колебаниях:

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Сопоставим этим колебаниям два вектора А1 и А2, вращающихся с соответствующими угловыми скоростями.

Как найти уравнение перпендикулярных колебаний

Сопоставляем колебаниям проекции векторов на ось y. Задача сложения колебаний сводится к нахождению проекции вектора А на ось y (амплитуда результирующего колебания) и угла f (фаза результирующего колебания).

Из очевидных геометрических соображений находим:

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Отметим, что в общем случае сложения колебаний с разными частотами амплитуда результирующего колебания будет зависеть от времени. Если же частоты одинаковы, то Как найти уравнение перпендикулярных колебаний, то есть зависимость от времени исчезает. На языке векторной диаграммы это означает, что складываемые векторы при своем вращении не меняют своего относительного положения. В этом случае формулы для амплитуды и фазы результирующего колебания запишутся так:

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Рассмотрим сложение двух однонаправленных колебаний с неравными, но близкими частотами, то есть Как найти уравнение перпендикулярных колебаний, и пусть для определенности Как найти уравнение перпендикулярных колебаний. Для простоты пусть начальные фазы и амплитуды этих колебаний равны. В результате сложения двух колебаний

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

получим уравнение суммарного колебания:

Как найти уравнение перпендикулярных колебаний

Полученное результирующее колебание не является гармоническим (сравни с уравнением (1)); такого вида колебания носят название биений, название понятно, если посмотреть на график колебаний.

Как найти уравнение перпендикулярных колебаний

Величина, стоящая перед синусом, меняется со временем относительно медленно, так как разность частот мала. Эту величину условно называют амплитудой биений, а разность складываемых частот Как найти уравнение перпендикулярных колебаний— частотой биений (циклической).

При сложении взаимно перпендикулярных колебаний необходимо найти уравнение траектории тела, то есть из уравнений колебаний типа x = x(t), y = y(t) исключить t и получить зависимость типа y(x).

например, сложим два колебания с одинаковыми частотами:

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

исключив время, получим:

Как найти уравнение перпендикулярных колебаний

В общем случае это — уравнение эллипса. При A1=A2 — окружность, при Как найти уравнение перпендикулярных колебаний(m — целое) — отрезок прямой.

Вид траектории при сложении взаимно перпендикулярных колебаний зависит от соотношения амплитуд, частот и начальных фаз складываемых колебаний. Получающиеся кривые носят название фигур Лиссажу.

Видео:Урок 342. Сложение взаимно перпендикулярных колебаний. Фигуры ЛиссажуСкачать

Урок 342. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу

Лекция №7. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

5.1. Свободные гармонические колебания и их характеристики.

Колебания − это движения или процессы, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебания, повторяются через равные промежутки времени. Наиболее важными характеристиками колебания являются: смещение, амплитуда, период, частота, циклическая частота, фаза.

Простейший вид периодических колебаний − это гармонические колебания. Гармонические колебания − это периодическое изменение во времени физической величины, происходящее по закону косинуса или синуса. Уравнение гармонических колебаний имеет вид

Как найти уравнение перпендикулярных колебаний

1) Смещение x − это величина, характеризующая колебания и равная отклонению тела от положения равновесия в данный момент времени.

2) Амплитуда колебаний А − это величина, равная максимальному отклонению тела от положения равновесия.

3) Период колебаний T − это наименьший промежуток времени, через который система, совершающая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Единица измерения [T] = 1 с .

За период система совершает одно полное колебание.

4) Частота колебаний ν − это величина, равная числу колебаний, совершаемых в единицу времени (за 1 секунду). Единица измерения [ν]= 1 Гц . Частота определяется по формуле

Как найти уравнение перпендикулярных колебаний

5) Циклическая частота ω − это величина, равная числу полных колебаний, совершающихся за 2π секунд. За единицу циклической частоты принята угловая частота, при которой за время 1 с совершается 2π циклов колебаний, [ω]= с -1 . Циклическая частота связана с периодом и частотой колебаний соотношением

Как найти уравнение перпендикулярных колебаний

6) Фаза колебаний ωt + φ0 − фаза указывает местоположение колеблющейся точки в данный момент времени.

7) Начальная фаза φ0 − указывает местоположение колеблющейся точки в момент времени t = 0 .

5.2. Сложение одинаково направленных и взаимно перпендикулярных гармонических колебаний.

Как найти уравнение перпендикулярных колебаний

Сложение нескольких колебаний одинакового направления можно изображать графически с помощью метода векторной диаграммы.

Гармоническое колебание может быть представлено графически с помощью вращающегося вектора амплитуды А . Для этого из произвольной точки O , выбранной на оси Ox , под углом φ0 , равным начальной фазе колебания, откладывается вектор амплитуды А . Модуль этого вектора равен амплитуде рассматриваемого колебания. Если этот вектор привести во вращение с угловой скоростью ω , равной циклической частоте колебаний, то проекция конца вектора амплитуды будет перемещаться по оси Ox и принимать значения от -A до +A , а колеблющаяся величина изменяться со временем по закону x = Acos(ωt + φ0)

1. Сложение одинаково направленных гармонических колебаний.

Сложим два гармонических колебания одинакового направления и одинаковой частоты. Смещение x колеблющегося тела будет суммой смещений x1 и x2 , которые запишутся следующим образом:

Как найти уравнение перпендикулярных колебаний

Представим оба колебания на векторной диаграмме. Построим по правилу сложения векторов результирующий вектор А . Проекция этого вектора на ось Ox равна сумме проекций слагаемых векторов x=x2+x2 , следовательно, вектор А представляет собой результирующее колебание. Определим результирующий вектор амплитуды А потеореме косинусов

Как найти уравнение перпендикулярных колебаний

Так как угол между векторами А 1 и А 2 равен φ=π-(φ21) , то cos[π-(φ21)]=-cos(φ21) , следовательно, результирующая амплитуда колебания будет равна

Как найти уравнение перпендикулярных колебаний

Определим начальную фазу результирующего колебания.

Из рисунка видно, что начальная фаза результирующего колебания

Как найти уравнение перпендикулярных колебаний

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, также совершает гармонические колебания в том же направлении и с той же частотой.

2. Сложение взаимно перпендикулярных гармонических колебаний.

Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты, происходящих во взаимно перпендикулярных направлениях. Допустим, что материальная точка совершает колебания как вдоль оси X , так и вдоль оси Y . Выберем начало отсчета времени так, чтобы начальная фаза первого колебания была равна нулю. Тогда уравнения колебаний примут вид

Как найти уравнение перпендикулярных колебаний

где φ − разность фаз обоих колебаний.

Уравнение траектории получим, исключив из уравнений (5.2.6) параметр времени t: cosωt= $$xover A_1$$ , а sinωt= $$sqrt=sqrt$$ Разложим косинус во втором из уравнений (5.2.6)

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Перепишем это уравнение в следующем виде

Как найти уравнение перпендикулярных колебаний

После преобразования, получим

Как найти уравнение перпендикулярных колебаний

Используя тригонометрическое тождество cos 2 φ+sin 2 φ=1 , окончательно получим

Как найти уравнение перпендикулярных колебаний

Это есть уравнение эллипса, оси которого ориентированы относительно координатных осей произвольно. Ориентация эллипса и величина его полуосей зависят от амплитуд колебаний и разности фаз.

Рассмотрим несколько частных случаев и определим форму траектории для них:

a) разность фаз равна нулю [φ=0]

В этом случае $$( — )^2=0$$ , откуда получается уравнение прямой

Как найти уравнение перпендикулярных колебаний

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой ω и амплитудой $$A= sqrt<A_1+A_2>$$ .

2) разность фаз равна ±π[φ=±π] .

Как найти уравнение перпендикулярных колебаний

В этом случае $$( — )^2=0$$ , откуда получается уравнение прямой

Как найти уравнение перпендикулярных колебаний

3) Разность фаз равна ± $$πover 2$$ [φ=± $$π over2$$ ] . Тогда

Как найти уравнение перпендикулярных колебаний

Уравнение эллипса, причем полуоси эллипса равны соответствующим амплитудам колебаний. При равенстве амплитуд колебаний эллипс вырождается в окружность. Случаи φ=+ $$πover 2$$ и φ=- $$πover 2$$ отличаются направлением движения. Если φ=+ $$πover 2$$ , то уравнения колебаний имеют следующий вид: x=A1cosωt , и y=-A2sinωt и движение совершается по часовой стрелке. Если φ=- $$πover 2$$ , , то уравнения колебаний имеют следующий вид: x=A1cosωt , и y=A2sinωt и движение совершается против часовой стрелке.

Рассмотренные три частных случая представлены на рис. 5.2.3, а, б, в. Рис

4) Если частоты складываемых взаимно перпендикулярных колебаний различны, то траектория результирующего движения имеет вид сложных кривых, называемых фигурами Лиссажу . Форма этих кривых определяется соотношением амплитуд, частот и разности фаз складываемых колебаний.

На рис. 5.2.4 показаны фигуры Лиссажу, которые получаются при соотношении частот 1:2 и различной разности фаз колебаний.

Как найти уравнение перпендикулярных колебаний

По виду фигур можно определить неизвестную частоту по известной частоте или определить соотношение частот складываемых колебаний.

5.3. Дифференциальное уравнение гармонических колебаний и его решение.

Продифференцируем по времени уравнение гармонических колебаний

Как найти уравнение перпендикулярных колебаний

и получим выражение для скорости

Как найти уравнение перпендикулярных колебаний

Из сравнения уравнений (5.3.1) и (5.3.2) следует, что скорость опережает смещение по фазе на π/2 . Амплитуда скорости равна Аω .

Продифференцировав уравнение (2) еще раз по времени, получим выражение для ускорения

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Как следует из уравнения (5.3.3), ускорение и смещение находятся в противофазе. Это означает, что в тот момент времени, когда смещение достигает наибольшего, положительного значения, ускорение достигает наибольшего по величине отрицательного значения, и наоборот. Амплитуда ускорения равна Аω 2 (рис. 5.3.1).

Из выражения (5.3.3) следует дифференциальное уравнение гармонических колебаний

Как найти уравнение перпендикулярных колебаний

Результирующая сила, действующая на материальную точку массой m , определяется с помощью второго закона Ньютона. Проекция этой силы

Как найти уравнение перпендикулярных колебаний

Эта сила пропорциональна смещению точки из положения равновесия и направлена в сторону противоположную этому смещению, т. е. она стремится вернуть точку в положение равновесия, и поэтому называется возвращающей силой . Таким образом, гармонические колебания происходят под действием силы F , пропорциональной смещению x и направленной к положению равновесия,

Как найти уравнение перпендикулярных колебаний

где k=mω 2 − постоянный коэффициент. Возвращающая сила подобна упругим силам, возникающим в телах при их деформации. Такая зависимость силы от смещения характерна для упругой силы, поэтому силы иной физической природы, удовлетворяющие зависимости (5.3.6) называются квазиупругими силами .

Материальная точка, совершающая колебания под действием квазиупругой силы, называется линейным осциллятором . Ее динамическое поведение описывается дифференциальным уравнением

Как найти уравнение перпендикулярных колебаний

ω0 − собственная частота осциллятора.

Решение этого уравнения дает закон движения линейного осциллятора x=Acos(ωt+φ0) .

5.4. Энергия гармонических колебаний.

Как найти уравнение перпендикулярных колебаний

В процессе колебаний происходит превращение кинетической энергии в потенциальную энергию и обратно (рис. 5.4.1). В момент наибольшего отклонения от положения равновесия полная энергия состоит только из потенциальной энергии, которая достигает своего наибольшего значения. Далее при движении к положению равновесия потенциальная энергия уменьшается, при этом кинетическая энергия возрастает. При прохождении через положение равновесия полная энергия состоит лишь из кинетической энергии, которая в этот момент достигает своего наибольшего значения. Далее при движении к точке наибольшего отклонения происходит уменьшение кинетической и увеличение потенциальной энергии. И при наибольшем отклонении потенциальная опять максимальная, а кинетическая энергия рана нулю. И т. д.

Потенциальная энергия тела, совершающего гармонические колебания равна

Как найти уравнение перпендикулярных колебаний

Кинетическая энергия тела, совершающего гармонические колебания равна

Как найти уравнение перпендикулярных колебаний

Таким образом, полная энергия гармонического колебания, состоящая из суммы кинетической и потенциальной энергий, определяется следующим образом

Как найти уравнение перпендикулярных колебаний

Следовательно, полная энергия гармонического колебания

Как найти уравнение перпендикулярных колебаний

оказывается постоянной в случае гармонических колебаний.

Найдем среднее значение потенциальной энергии за период колебания

Как найти уравнение перпендикулярных колебаний

Аналогично получается для среднего значение кинетической энергии

Как найти уравнение перпендикулярных колебаний

Таким образом, и потенциальная, и кинетическая энергии изменяются относительно своих средних значений по гармоническому закону с частотой 2ω и амплитудой ωt kA 2

5.5. Пружинный, математический и физический маятники.

Как найти уравнение перпендикулярных колебаний

Рассмотрим несколько простейших систем, совершающих свободные гармонические колебания.

1) Пружинный маятник − это материальная точка массой m , подвешенная (или расположенная горизонтально) на абсолютно упругой пружине жесткостью k и совершающий гармонические колебания под действием упругой силы. Пусть шайба массой m , прикрепленная к пружине, совершает колебания. Для составления дифференциального уравнения колебаний запишем второй закон Ньютона в проекции на ось Ox Fупр=ma . Упругая сила Fупр=-kx . Приравнивая последние два уравнения и, используя определение ускорения тела, получим

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

Сравнивая уравнения (5.3.7) и (5.5.2) получаем, что пружинный маятник совершает гармонические колебания с частотой

Как найти уравнение перпендикулярных колебаний

Так как период колебаний определяется по формуле T= $$2πover ω_0$$ , то период колебаний пружинного маятника

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

2) Математический маятник − это идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешена материальная точка массой m . Отклонение маятника от положения равновесия будем характеризовать углом φ , образованным нитью с вертикалью.

При отклонении маятника от положения равновесия возникает вращательный момент M , равный по величине mqlsinφ .Он имее акое же направление, что стремится вернуть маятник в положение равновесия. Следовательно, выражение для вращательного момента имеет вид: M=-mqlsinφ . Применим основно ательного движения

Как найти уравнение перпендикулярных колебаний

где L=ml 2 − момент инерции материальной точки. Тогда, учитывая, что угловое ускорение ε= $$d^2φover dt^2$$ , получим

Как найти уравнение перпендикулярных колебаний

Если рассматривать малые колебания, то sinφ≈φ . Получим

Как найти уравнение перпендикулярных колебаний

То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой

Как найти уравнение перпендикулярных колебаний

Период колебаний математического маятника

Как найти уравнение перпендикулярных колебаний

Как найти уравнение перпендикулярных колебаний

3) Физический маятник − это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной оси, проходящей через точку, не совпадающую с центром масс тела. При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен M=-mglsinφ .

Согласно основному уравнению динамики вращательного движения получаем

Как найти уравнение перпендикулярных колебаний

где I − момент инерции маятника относительно оси, проходящей через точку подвеса.

Если рассматривать малые колебания, то sinφ≈φ . Получим

Как найти уравнение перпендикулярных колебаний

То есть при малых колебаниях угловое отклонение математического маятника изменяется по гармоническому закону с частотой

Как найти уравнение перпендикулярных колебаний

Период колебаний математического маятника

Как найти уравнение перпендикулярных колебаний

Из сопоставления формул периодов колебаний математического и физического маятников T=2π $$sqrt$$ и T=2π $$sqrt$$ получается, что математический маятник с длиной

Как найти уравнение перпендикулярных колебаний

будет иметь такой же период колебаний, что и данный физический маятник.

Величина lпр (отрезок OO′) называется приведенной длиной физического маятника − это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, и лежащая на расстоянии приведенной длины от оси вращения, называется центром качания (О′) физического маятника. Точка подвеса О и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания.

Видео:Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

Сложение перпендикулярных колебаний. Фигуры Лиссажу.

Сложение взаимно перпендикулярных колебаний
Найдем результат сложения двух гармонических колебаний одинаковой частоты ω, которые происходят во взаимно перпендикулярных направлениях вдоль осей х и у. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем это в виде Как найти уравнение перпендикулярных колебаний(1) где α — разность фаз обоих колебаний, А и В равны амплитудам складываемых колебаний. Уравнение траектории результирующего колебания определим исключением из формул (1) времени t. Записывая складываемые колебания как Как найти уравнение перпендикулярных колебаний Как найти уравнение перпендикулярных колебанийи заменяя во втором уравнении Как найти уравнение перпендикулярных колебанийна Как найти уравнение перпендикулярных колебанийи Как найти уравнение перпендикулярных колебанийна Как найти уравнение перпендикулярных колебаний, найдем после несложных преобразований уравнение эллипса, у которого оси ориентированы произвольно относительно координатных осей: Как найти уравнение перпендикулярных колебаний(2) Поскольку траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными. Размеры осей эллипса и его ориентация зависят от амплитуд складываемых колебаний и разности фаз α. Рассмотрим некоторые частные случаи, которые представляют для нас физический интерес: 1) α = mπ (m=0, ±1, ±2, . ). В этом случае эллипс становится отрезком прямой Как найти уравнение перпендикулярных колебаний(3) где знак плюс соответствует нулю и четным значениям m (рис. 1а), а знак минус — нечетным значениям m (рис. 2б). Результирующее колебание есть гармоническое колебание с частотой ω и амплитудой , которое совершается вдоль прямой (3), составляющей с осью х угол . В этом случае имеем дело с линейно поляризованными колебаниями; 2) α = (2m+1)(π/2) (m=0, ± 1, ±2. ). В этом случае уравнение станет иметь вид Как найти уравнение перпендикулярных колебаний(4) Это есть уравнение эллипса, у которого оси совпадают с осями координат, а его полуоси равны соответствующим амплитудам (рис. 2). Если А=В, то эллипс (4) превращается в окружность. Такие колебания называются циркулярно поляризованными колебаниями иликолебаниями, поляризованными по кругу. Как найти уравнение перпендикулярных колебанийЕсли частоты складываемых взаимно перпендикулярных колебаний имеют различные значения, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, которая совершает одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу. Вид этих замкнутых кривых зависит от соотношения амплитуд, разности фаз и частот складываемых колебаний. На рис. 3 даны фигуры Лиссажу для различных соотношений частот (даны слева) и разностей фаз (даны вверху; разность фаз равна φ). Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, которые параллельны осям координат. По виду фигур можно найти неизвестную частоту по известной или найти отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу — широко применяемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний. Как найти уравнение перпендикулярных колебаний

Фигу́ры Лиссажу́ — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний. В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз 0 или Как найти уравнение перпендикулярных колебанийвырождаются в отрезки прямых, а при разности фаз Как найти уравнение перпендикулярных колебанийи равенстве амплитуд превращаются в окружность. Если периоды обоих колебаний неточно совпадают, то разность фаз всё время меняется, вследствие чего эллипс всё время деформируется. При существенно различных периодах фигуры Лиссажу не наблюдаются. Однако, если периоды относятся как целые числа, то через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка снова возвращается в то же положение — получаются фигуры Лиссажу более сложной формы. Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний.

Математическое выражение для кривой Лиссажу[править | править вики-текст]

Как найти уравнение перпендикулярных колебаний

где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз

Вид кривой сильно зависит от соотношения a/b. Когда соотношение равно 1, фигура Лиссажу имеет вид эллипса, при определённых условиях она имеет вид окружности(A = B, δ = π/2 радиан) и отрезка прямой (δ = 0). Ещё один пример фигуры Лиссажу — парабола (a/b = 2, δ = π/2). При других соотношениях фигуры Лиссажу представляют собой более сложные фигуры, которые являются замкнутыми при условии a/b — рациональное число.

Фигуры Лиссажу, где a = 1, b = N (N — натуральное число) и

Как найти уравнение перпендикулярных колебаний

являются полиномами Чебышёва первого рода степени N.

|следующая лекция ==>
Метод векторных диаграмм. Рассмотрим вращающийся против часовой стрелки с постоянной угловой скоростью w вектор А|Неинерциальные системы отсчета. Описание движения в неинерциальных системах. Силы инерции. Центробежная сила. Сила Кориолиса.

Дата добавления: 2016-01-29 ; просмотров: 9562 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

📺 Видео

Выполнялка 53.Гармонические колебания.Скачать

Выполнялка 53.Гармонические колебания.

5.4 Уравнение гармонических колебанийСкачать

5.4 Уравнение гармонических колебаний

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

67. Сложение колебанийСкачать

67. Сложение колебаний

Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Сложение взаимно перпендикулярных гармонических колебанийСкачать

Сложение взаимно перпендикулярных гармонических колебаний

Фигуры ЛиссажуСкачать

Фигуры Лиссажу

Сложение взаимно перпендикулярных колебанийСкачать

Сложение взаимно перпендикулярных колебаний

Как решить уравнение колебаний? | Олимпиадная физика, механические гармонические колебания, 11 классСкачать

Как решить уравнение колебаний? | Олимпиадная физика, механические гармонические колебания, 11 класс

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

10 класс, 19 урок, График гармонического колебанияСкачать

10 класс, 19 урок, График гармонического колебания

Математика это не ИсламСкачать

Математика это не Ислам

70. Затухающие колебанияСкачать

70. Затухающие колебания

Урок 95. Теорема о взаимно перпендикулярных осяхСкачать

Урок 95. Теорема о взаимно перпендикулярных осях

Урок 335. Анализ графика гармонических колебанийСкачать

Урок 335. Анализ графика гармонических колебаний
Поделиться или сохранить к себе: