- Линейная функция
- График линейной функции
- Прямые, параллельные оси ординат
- Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
- Линейная функция — определение и вычисление с примерами решения
- Основное свойство линейной функции
- Задачи на прямую
- Общее уравнение прямой. Неявная линейная функция
- Система двух уравнений первой степени
- Примеры применения линейной функции
- График линейной функции, его свойства и формулы
- Понятие функции
- Понятие линейной функции
- Свойства линейной функции
- Построение линейной функции
- Решение задач на линейную функцию
- 🌟 Видео
Видео:Составляем уравнение прямой по точкамСкачать
Линейная функция
Линейной функцией называют функцию, заданную формулой
y = kx + b, | (1) |
где k и b – произвольные (вещественные) числа.
При любых значениях k и b графиком линейной функции является прямая линия .
Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
График линейной функции
При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.
Рис.1 |
Рис.2 |
Рис.3 |
При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.
Рис.4 |
Рис.5 |
Рис.6 |
При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.
k y = kx + b1 и y = kx + b2 , имеющие одинаковые угловые коэффициенты и разные свободные члены имеющие разные угловые коэффициенты y = kx + b1 и перпендикулярны при любых значениях свободных членов. Угловой коэффициент прямой линии
равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).
Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b . При Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать Прямые, параллельные оси ординатПрямые, параллельные оси Oy , задаются формулой
где c – произвольное число, и изображены на рис. 13, 14, 15.
Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .; Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
где p, q, r – произвольные числа. В случае, когда что и требовалось. В случае, когда откуда вытекает, что уравнение (4) задает прямую линию вида (3). В случае, когда q = 0, p = 0, уравнение (4) имеет вид
и при r = 0 его решением являются точки всей плоскости: В случае, когда Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением
параллельна прямой, заданной уравнением (4) . Замечание 3 . При любом значении r2 прямая линия, заданная уравнением
перпендикулярна прямой, заданной уравнением (4) . Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и
В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде
где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство Итак, уравнение прямой, параллельной к прямой В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде
где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать Линейная функция — определение и вычисление с примерами решенияСодержание: Рассмотрим уравнение с двумя неизвестными где удовлетворяют следующие пары: Для того чтобы найти пару чисел, удовлетворяющих уравнению Так как в данном уравнении Для Функцию Пример: Вычислить значения линейной функции, определяемой уравнением Решение: Если Покажем, что если принять пару чисел В самом деле, рассмотрим точку Предположим, что точки Но так как Выражения Так как Число Предыдущие рассуждения позволяют сделать вывод: линейная функция Например, линейная функция Если имеем определенную прямую, отсекающую на оси Очевидно, имеет место и такое предложение: Всякой прямой, отсекающей на оси Координаты любой, точки, лежащей на указанной прямой, удовлетворяют уравнению (1), поэтому уравнение Таким образом, всякая линейная функция является уравнением некоторой прямой. Отметим частные случаи. 1. Пусть Прямая, определяемая этим уравнением, проходит через начало координат. Здесь 2. Пусть Этому уравнению соответствует прямая, параллельная оси На основании всего сказанного в этом параграфе легко решаются следующие задачи. Пример: Даны точки Решение: Если точка лежит на прямой, то ее координаты должны удовлетворять уравнению прямой. Поэтому для решения задачи подставим координаты точки Пример: Построить прямую, уравнение которой Решение: Чтобы построить прямую, надо знать, например, две ее точки. Поэтому дадим Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать Основное свойство линейной функцииРассмотрим линейную функцию Здесь первое и второе значения т. е. приращение линейной функции пропорционально приращению независимого переменного. Это и есть основное свойство линейной функции. Заметим, что Пример: Найдем приращение функции Решение: По основному свойству Пример: Найдем приращение функции Задачи на прямуюПример: Найти угол Решение: При пересечении прямых образуются четыре попарно равных угла. Найдя один из них, легко найти и другие. На рис. 16 прямые обозначены соответственно (1) и (2). Угол Пример: Найти угол между прямыми, заданными уравнениями Решение: Применяя формулу (1), получим: Если же будем считать, что Получены два ответа: сначала найден острый угол между заданными прямыми, а затем — тупой. Если заданы две параллельные прямые, то углы Таким образом, мы приходим к выводу: если прямые параллельны, то их угловые коэффициенты равны. Если прямые перпендикулярны, то угол между ними равен 90°, т. е. Это и есть условие перпендикулярности двух прямых. Это условие удобно запомнить в следующей формулировке: если две прямые перпендикулярны, то их угловые коэффициенты обратны по величине и противоположны по знаку. Пример: Найдем угол между прямыми, заданными уравнениями Решение: Следовательно, рассматриваемые прямые перпендикулярны. Пример: Даны две точки: Решение: Искомая прямая не параллельна оси В уравнениях Решая систему, находим: Подставляя найденные выражения в уравнение Это и есть уравнение прямой, проходящей через две точки, не расположенные на прямой, параллельной оси Пример: Написать уравнение прямой, проходящей через данную точку Решение: Прежде всего найдем угловой коэффициент искомой прямой: он равен тангенсу угла Так как прямая должна проходить через точку Находим отсюда неизвестное Это и есть уравнение прямой, проходящей через точку Если в уравнении (4) менять направление, не меняя точку Пример: Напишем уравнение прямой, проходящей через точку Решение: Так как Общее уравнение прямой. Неявная линейная функцияРассмотрим уравнение первой степени с двумя неизвестными Решим его относительно т. е. мы получили линейную функцию, где Уравнения (1) и (2) равносильны, поэтому пара чисел Координаты любой точки, лежащей на этой прямой, удовлетворяют уравнению (1), поэтому будем называть его также уравнением прямой. Рассмотрим особо случай, когда Из уравнения (1) (если Система двух уравнений первой степениНапомним, что две прямые, расположенные на плоскости, могут или пересекаться, или быть параллельными (т. е. не пересекаться), или сливаться (в этом случае можно сказать, что они пересекаются в каждой своей точке). Рассмотрим систему двух уравнений Каждое из этих уравнений является уравнением прямой. Решить систему — это значит найти значения Пример: Найдем точку пересечения двух прямых: Решение: Решая эту систему, получим: Пример: Найдем точку пересечения двух прямых: Решение: Решая эту систему, получим: Пример: Найдем точку пересечения данных прямых Решение: Решая эту систему, получим: Полученное равенство всегда справедливо, т. е. справедливо при любом значении Заметим, что два уравнения, рассматриваемые в этом примере, являются равносильными, поэтому они и представляют одну и ту же прямую. Примеры применения линейной функцииЛинейная функция встречается в формулировках многих физических законов и технических задач. Приведем примеры. Пример: Если точка движется равномерно по прямой, то ее расстояние от выбранной точки (от начала координат) выражается при помощи уравнения Пример: Закон Ома записывается в виде Пример: Если стоимость провоза единицы товара по железной дороге равна Если же стоимость товара на месте равна Здесь Линейная функция встречается в различных областях, но, где бы она ни встречалась, ее всегда можно рассматривать как уравнение прямой. Этим обстоятельством часто пользуются при решении задач. Пример: Два города А и В, расстояние между которыми равно 300 км, находятся на одной железнодорожной магистрали. На этой же магистрали между городами А к В надо выбрать пункт С, в котором предполагается устроить склад нефти для снабжения указанных городов. Надо выбрать пункт С так, чтобы общая стоимость перевозок нефти для снабжения города А и города В была наименьшей. Известно, что город А потребляет 400 т нефти, а город В —200 т. Перевозка одной тонны нефти на один километр обходится в Решение: Обозначим расстояние от А до предполагаемого пункта С через Это линейная функция. Если примем Так как пункт С надо выбрать так, чтобы стоимость была наименьшей, то его следует расположить в городе А; если же этого сделать нельзя по каким-либо соображениям, то, чем ближе расположить его к А, тем выгодней.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи Сайт пишется, поддерживается и управляется коллективом преподавателей Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC. Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг. Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать График линейной функции, его свойства и формулыО чем эта статья: Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать Понятие функции
Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать: Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений. Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения. Словесный способ. Графический способ — наглядно. Его мы и разберем в этой статье.
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать Понятие линейной функции
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат. Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки. Если известно конкретное значение х, можно вычислить соответствующее значение у. Нам дана функция: у = 0,5х — 2. Значит: если х = 0, то у = -2; если х = 2, то у = -1; если х = 4, то у = 0 и т. д. Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции. Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат. k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби. Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.
Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b. Видео:ЛИНЕЙНАЯ ФУНКЦИЯ | БАЗА | Как составить из 2 точек уравнение функции?Скачать Свойства линейной функцииОбласть определения функции — множество всех действительных чисел. Множеством значений функции является множество всех действительных чисел. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b. Функция не имеет ни наибольшего, ни наименьшего значений. Четность и нечетность линейной функции зависят от значений коэффициентов k и b: b ≠ 0, k = 0, значит, y = b — четная; b = 0, k ≠ 0, значит, y = kx — нечетная; b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида; b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен. График функции пересекает оси координат: ось абсцисс ОХ — в точке (−b/k; 0); ось ординат OY — в точке (0; b). x = −b/k — является нулем функции. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞). При k 0, то этот угол острый, если k Видео:9 класс, 7 урок, Уравнение прямойСкачать Построение линейной функцииВ геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y. Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график: В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции: если k > 0, то график наклонен вправо; если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY; если b 0, то график функции y = kx + b выглядит так: 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»> Если k > 0 и b > 0, то график функции y = kx + b выглядит так: 0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»> Если k > 0 и b В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а. Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции. Например, график уравнения х = 3: Условие параллельности двух прямых: График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2. Условие перпендикулярности двух прямых: График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2. Точки пересечения графика функции y = kx + b с осями координат: С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b. Координаты точки пересечения с осью OY: (0; b). С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k. Координаты точки пересечения с осью OX: (−b/k; 0). Видео:Уравнение параллельной прямойСкачать Решение задач на линейную функциюЧтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся! Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x. В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции. Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b. Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство: Таким образом, нам надо построить график функции y = -4x — 10 Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10). Поставим эти точки в координатной плоскости и соединим прямой: Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4). Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b. Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений. Вычтем из второго уравнения системы первое, и получим k = 3. Подставим значение k в первое уравнение системы, и получим b = -2. Ответ: уравнение прямой y = 3x — 2. 🌟 ВидеоМатематика без Ху!ни. Уравнение касательной.Скачать Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать 12. Уравнения прямой в пространстве Решение задачСкачать 10. Параллельность и перпендикулярность плоскостей Решение задачСкачать Математика без Ху!ни. Уравнение плоскости.Скачать Уравнения стороны треугольника и медианыСкачать Написать канонические и параметрические уравнения прямой в пространствеСкачать Как легко составить уравнение параболы из графикаСкачать |