Как найти температуру по уравнению менделеева клапейрона

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Примеры задач на уравнение Менделеева-Клапейрона

В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
Вопрос: сколько молей кислорода содержится в колбе?

  • Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)
  • В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

    Как найти температуру по уравнению менделеева клапейрона

    Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

    Теперь немного формул.

    где
    P — давление газа (например, в атмосферах)
    V — объем газа (в литрах);
    T — температура газа (в кельвинах);
    R — газовая постоянная (0,0821 л·атм/моль·K).
    Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

    Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также

    где n — число молей газа

    И как нетрудно заметить, соотношение

    есть величина постоянная для одного и того же количества моль газа.

    И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

    Так, закон Бойля-Мариотта гласит (это два человека):
    Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

    Закон Гей-Люссака (а вот это один человек):
    Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

    Закон Шарля:
    Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

    Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

    Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
    Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

    Видео:Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачиСкачать

    Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачи

    Уравнение Клапейрона-Менделеева

    Видео:Уравнение состояния идеального газа. 10 класс.Скачать

    Уравнение состояния идеального газа. 10 класс.

    Что такое уравнение Клапейрона-Менделеева

    Идеальный газ — это газ, в котором пренебрегают взаимодействием молекул газа между собой.

    Идеальными считают разреженные газы. Особенно близкими к идеальным считают гелий и водород.

    Идеальный газ — это упрощенная математическая модель, которая широко применяется для описания свойств и поведения реальных газов при атмосферном давлении и комнатной температуре.

    Давление, объем и температура — это основные параметры состояния системы, и они связаны друг с другом. Соотношение, при котором определяется данная связь, называется уравнением состояния данного газа.

    Существует эквивалентная макроскопическая формулировка идеального газа — это такой газ, который одновременно будет подчиняться закону Бойля-Мариотта и Гей-Люссака, то есть:

    p V = c o n s t * T

    В представленном выше уравнении состоянии газа под const подразумевается количество молей.

    Свойства классического и квазиклассического идеального газа описываются уравнением состояния идеального газа, которое называется уравнением Менделеева-Клапейрона, ниже представлена формула Менделеева-Клапейрона.

    p V = m M R T = n R T , где m — масса газа, M — молярная масса газа, R = 8 , 314 Д ж / ( м о л ь * К ) — универсальная газовая постоянная, T — температура (К), n — количество молей газа.

    Таким образом давление и объем прямо пропорциональны количеству молей и температуре.

    Также уравнение Клапейрона-Менделеева можно записать в ином виде:

    p V = N k T , где N — это количество молекул газа массой m , k = 1 , 38 * 10 — 23 Д ж / К — постоянная Больцмана, которая определяет «долю» газовой постоянной, приходящуюся на одну молекулу и определяется по формуле:

    N = m N A M , где

    N A = 6 . 02 * 10 23 м о л ь — 1 ; — это постоянная Авогадро.

    Видео:Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

    Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

    Какое значение имеет универсальная газовая постоянная

    Универсальная газовая постоянная (R) — это величина, которая является константой, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 K.

    Значение данной константы находится как произведение постоянной Больцмана ( k = 1 , 38 * 10 — 23 Д ж / К ) на число Авогадро ( N A = 6 . 02 * 10 23 м о л ь — 1 ) . Таким образом универсальная газовая постоянная принимает следующее значение: R = 8 , 314 Д ж / ( м о л ь * К ) .

    Постоянную Больцмана используют в формулах, описывающих изучаемое явление или поведение рассматриваемого объекта с микроскопической точки зрения, тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.

    Видео:Успеть за 300 секунд, #3: Уравнение Клапейрона-МенделееваСкачать

    Успеть за 300 секунд, #3: Уравнение Клапейрона-Менделеева

    Связь с другими законами состояния идеального газа

    С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один трех макропараметров (давление, температура или объем) — остаются неизменными.

    Количественные зависимости между двумя параметрами газа при фиксированном третьем параметре называют газовыми законами, которые связывают эти параметры.

    Изопроцессы — это термодинамические процессы, во время протекания которых количество вещества и один из макропараметров состояния: давление, объем, температура или энтропия — остается неизменным.

    В зависимости от того, какой параметр остается неизменным различают разные процессы, которые выражаются законами, являющимися следствием уравнения состояния газа:

    • изотермический процесс (T=const);
    • изохорный процесс (V=const);
    • изобарный процесс (p=const).

    Изотермический процесс (T=const)

    Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

    Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой — термостатом. Им может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

    Согласно уравнению Клапейрона-Менделеева, в любом состоянии с неизменной температурой произведение давления газа на объем одно и то же, то есть постоянно:

    Этот закон был открыт экспериментально английским ученым Бойлем и несколько позднее французским ученым Мариоттом. Именно поэтому он называется закон Бойля-Мариотта.

    Закон Бойля-Мариотта справедлив для любых газов, а также для смеси газов (например, для воздуха).

    Зависимость давления газа от объема при постоянной температуре изображается графической кривой — изотермой. Изотерма для различных температур представлена в координатах pV на рис.1. и представляет собой гиперболу.

    Рис.1. Изотерма в pV — координатах.

    Изохорный процесс (V=const)

    Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

    Из уравнения состояния следует, что отношение давлений газа данной массы при постоянно объеме равно отношению его абсолютных температур:

    p 1 p 2 = T 1 T 2

    Газовый закон был установлен экспериментально в 1787 г. французским физиком Ж. Шарлем и носит название закона Шарля: давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

    Так, если в качестве одного из состояний газа выбрать состояние газа при нормальных условиях, тогда

    p = p 0 T T 0 = p 0 γ T

    Коэффициент γ называют температурным коэффициентом давления газа. Он одинаков для всех газов.

    Зависимость давления газа от температуры при постоянном объеме изображается графически прямой, которая называется изохорой (Рис.2).

    Рис.2 Изображение изохоры в pT-координатах.

    Изобарный процесс (p=const)

    Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

    Из уравнения Клапейрона-Менделеева вытекает, что отношение объемов газа данной массы при постоянном давлении равно отношению его абсолютных температур.

    V 1 V 2 = T 1 T 2

    Если в качестве второго состояния газа выбрать состояние при нормальных условиях (нормальном атмосферном давлении, температуре таяния льда) следует:

    V = V 0 T T 0 = V 0 α T

    Этот газовый закон был установлен экспериментально в 1802 г французским ученым Гей-Люссаком.

    Закон Гей-Люссака: объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре.

    Коэффициент α называют температурным коэффициентом объемного расширения газов.

    Зависимость объема газа от температуры при постоянном давлении изображается графической прямой, которая называется изобарой (Рис.3).

    Рис. 3. Изобара в VT-координатах.

    Видео:Физика 10 класс: Уравнение Клапейрона-МенделееваСкачать

    Физика 10 класс: Уравнение Клапейрона-Менделеева

    Использование универсального уравнения для решения задачи

    В реальности проводятся различные физико-химические процессы. Рассмотрим каким образом уравнение состояния идеального газа и законы, связанные с ним находят применение для решения физических и химических задач.

    Определить давление кислорода в баллоне объемом 1 м 3 при температуре t = 27 C o . Масса кислорода 1 кг.

    Так как в уравнении даны объем и температура — два из трех макроскопических параметров, а третий (давление) нужно определить, то мы можем использовать уравнение Клапейрона-Менделеева:

    p V = n R T = m M R T

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 27 + 273 = 300 K

    Молярная масса кислорода известна из таблицы Менделеева:

    M ( O 2 ) = 2 * 16 = 32 г / м о л ь = 32 * 10 — 3 к г / м о л ь

    Выразим из уравнения состояния давления и поставим все имеющиеся данные:

    p = n R T V = m R T M V = 1 * 8 . 31 * 300 32 * 10 — 3 * 1 = 77 . 906 П а = 78 к П а

    Ответ: p = 78 кПа.

    Каким может быть наименьший объем баллона, содержащего кислород массой 6,4 кг, если его стенки при t = 20 C o выдерживают p = 1568 Н / с м 2 ?

    Используем уравнение Менделеева-Клапейрона, из которого выражаем объем кислорода, который нужно найти:

    p = n R T V = m R T M V

    Молярная масса кислорода предполагается равной:

    M ( O 2 ) = 2 * 16 = 32 г / м 3

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 20 + 273 = 293 K

    Переводим давление: p = 15680000 Па

    Выражаем из уравнения Клапейрона-Менделеева объем и подставляем значения, данные в условиях задачи:

    V = n R T p = m R T M p = 6 . 4 * 8 . 31 * 293 15680000 * 32 * 10 — 3 = 3 . 1 * 10 — 2 м 3 = 31 л .

    Используя уравнение состояния идеального газа, доказать, что плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Согласно уравнению Менделеева-Клапейрона:

    p = n R T V = m R T M V

    Плотность — это величина, характеризующая массу некоторого объема и находится по формуле:

    ρ = m V и л и V = m ρ

    Тогда p m ρ = n R T = m R T M

    Откуда выражаем плотность газа:

    Для водорода эта формула запишется следующим образом:

    ρ H 2 = p M H 2 R T

    По условию задачи водород и любой другой газ находятся при одинаковых условиях, откуда следует, что:

    ρ H 2 M H 2 = p R T

    Поставим последнее выражение в выражение для плотности любого газа:

    ρ = M * ρ H 2 M H 2

    Молярная масса водорода, исходя из таблицы Менделеева равна 2 г/моль и тогда. Молекулярная масса численно равная молярной и представляет собой массу молекулы в атомных единицах, поэтому в дальнейшем мы совершили переход к молекулярной массе.

    ρ = M r * ρ H 2 2

    Вывод: плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Рассмотрим несколько задач на законы, связанные с уравнение Клапейрона-Менделеева, то есть на изотермические, изохорные, изобарные процессы.

    При уменьшении давления газа в 2,5 раза его объем увеличился на 12 л. Какой объем занимал газ в начальном состоянии, если температура на протяжении всего процесса оставалась постоянной?

    По условию задачи температура в ходе всего процесса оставалась постоянной, откуда следует, что у нас изотермический процесс, и мы можем воспользоваться для решения законом Бойля-Мариотта.

    p 1 V 1 = p 2 V 2 , г д е p 1 – давление газа в начальном состоянии (до расширения), V 1 — объем газа в начальном состоянии, p 2 = p 1 2 . 5 — давление газа в конечном состоянии (после расширения), V 2 = V 1 + ∆ V — объем газа в конечном состоянии.

    Откуда можем найти начальный объем:

    p 1 V 1 = p 1 2 . 5 ( V 1 + ∆ V ) = p 1 2 . 5 V 1 + p 1 2 . 5 ∆ V

    V 1 ( p 1 — p 1 2 . 5 ) = p 1 2 . 5 ∆ V

    p 1 2 . 5 V 1 ( 2 . 5 — 1 ) = p 1 2 . 5 ∆ V

    V 1 = ∆ V 1 , 5 = 8 л

    Ответ: первоначальный объем газа был равен 8 л.

    Газ находится в баллоне при температуре 400 К. До какой температуры нужно нагреть газ, чтобы его давление увеличилось в 1,5 раза?

    Так как нагревание газа по условиям данной задачи происходит при постоянном объеме, значит перед нами изохорный процесс.

    При изохорном процессе:

    p 1 T 1 = p 2 T 2

    T 2 = p 2 T 1 p 1

    p 2 p 1 = 1 . 5 T 2 = 1 . 5 * T 1 = 1 . 5 * 400 = 600 K

    При 27°C объем газа равен 600 мл. Какой объем займет газ при 57°C, если давление будет оставаться постоянным?

    Так как давление по условию остается постоянным, то можем использовать закон Гей-Люссака.

    V 1 V 2 = T 1 T 2

    V_2 – искомый объем

    Для правильного расчета необходимо перевести температуры из Цельсий в Кельвины:

    T 1 = 273 + 27 = 300 K

    T 2 = 273 + 57 = 330 K

    T 2 V 1 T 1 = V 2

    V 2 = ( 600 * 330 ) / 300 = 660 м л

    Газ в трубе плавильной печи охлаждается от температуры t 1 = 1150 ° С д о t 2 = 200 ° С . Во сколько раз увеличивается плотность газа при этом? Давление газа не меняется.

    Так как по условию задания давления газа не изменяется, значит перед нами изобарный процесс. Для решения воспользуемся законом Гей-Люссака:

    V 1 V 2 = T 1 T 2

    Перейдем к абсолютной температуре:

    T 1 = 1150 + 273 = 1423 K

    T 2 = 200 + 273 = 473 K

    Масса газа: m = ρ 1 V 1 = ρ 2 V 2

    Использование этих формул приводит к следующему:

    Видео:Решение графических задач на тему Газовые законыСкачать

    Решение графических задач на тему Газовые законы

    Уравнение состояния идеального газа

    теория по физике 🧲 молекулярная физика, МКТ, газовые законы

    Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

    Уравнение состояния идеального газа

    Как найти температуру по уравнению менделеева клапейрона

    Внимание! При решении задач важно все единицы измерения переводить в СИ.

    Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

    Из основного уравнения состояния идеального газа выразим массу:

    Как найти температуру по уравнению менделеева клапейрона

    Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

    Подсказки к задачам

    Важна только та масса, что осталась в сосуде. Поэтому:

    Давление возросло на 15%p2 = 1,15p1
    Объем увеличился на 2%V2 = 1,02V1
    Масса увеличилась в 3 разаm2 = 3m1
    Газ нагрелся до 25 о СT2 = 25 + 273 = 298 (К)
    Температура уменьшилась на 15 К (15 о С)T2 = T1 – 15
    Температура уменьшилась в 2 разаКак найти температуру по уравнению менделеева клапейрона
    Масса уменьшилась на 20%m2 = 0,8m1
    Выпущено 0,7 начальной массы
    Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:

    Газ потерял половину молекулКак найти температуру по уравнению менделеева клапейрона
    Молекулы двухатомного газа (например, водорода), диссоциируют на атомыКак найти температуру по уравнению менделеева клапейрона
    Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
    Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
    Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
    Нормальные условияТемпература T0 = 273 К Давление p0 = 10 5 Па
    Единицы измерения давления1 атм = 10 5 Па

    Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

    2,8 МПа = 2,8∙10 6 Па

    1,5 МПа = 1,5∙10 6 Па

    Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

    Как найти температуру по уравнению менделеева клапейрона

    Преобразим уравнения и получим:

    Как найти температуру по уравнению менделеева клапейрона

    Приравняем правые части и выразим искомую величину:

    Как найти температуру по уравнению менделеева клапейрона

    Как найти температуру по уравнению менделеева клапейронаНа графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

    Алгоритм решения

    Решение

    График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

    Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

    Запишем уравнение Менделеева — Клапейрона:

    Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

    ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

    Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

    Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

    pазбирался: Алиса Никитина | обсудить разбор | оценить

    На высоте 200 км давление воздуха составляет примерно 10 –9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

    💡 Видео

    Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

    Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

    Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭСкачать

    Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭ

    Уравнение Менделеева-Клапейрона.Все виды задач на ЕГЭ.52 задачиСкачать

    Уравнение Менделеева-Клапейрона.Все виды задач на ЕГЭ.52 задачи

    Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой АрхиповымСкачать

    Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой Архиповым

    Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

    Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

    Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

    Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

    задача на уравнение Менделеева - Клапейрона movieСкачать

    задача на уравнение Менделеева - Клапейрона movie

    Задачи на уравнение Менделеева-Клапейрона. Ч.2. Решение задач.Скачать

    Задачи на уравнение Менделеева-Клапейрона. Ч.2. Решение задач.

    Урок 149. Абсолютная температурная шкалаСкачать

    Урок 149. Абсолютная температурная шкала

    Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

    Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

    Физика. 10 класс. Решение задач на уравнение Менделеева Клапейрона, часть 1 (2020)Скачать

    Физика. 10 класс.  Решение задач на уравнение Менделеева Клапейрона, часть 1 (2020)

    62. Уравнение Клапейрона-МенделееваСкачать

    62. Уравнение Клапейрона-Менделеева

    Размеры температурного возмущения из уравнения Менделеева-Клапейрона - Мыслить №136Скачать

    Размеры температурного возмущения из уравнения Менделеева-Клапейрона - Мыслить №136

    Модель идеального газа. Уравнение Менделеева-Клапейрона | ФизикаСкачать

    Модель идеального газа. Уравнение Менделеева-Клапейрона | Физика
    Поделиться или сохранить к себе: