Как найти скорость из уравнения координаты

Координатный способ задания движения точки

Как найти скорость из уравнения координаты

Содержание
  1. Введение
  2. Определение кинематических величин
  3. Пример решения задачи
  4. Определение скорости и ускорения точки по заданным уравнениям ее движения
  5. Решение
  6. Определение вида траектории
  7. Определение скорости точки
  8. Определение ускорения точки
  9. Определение остальных величин
  10. Как найти скорость из уравнения координаты
  11. ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ
  12. Типовая задача «Уравнение координаты (нахождение неизвестной величины)»
  13. Типовая задача «Уравнение координаты. Движение двух тел»
  14. Типовая задача «График координаты»
  15. Типовая задача «График координаты. Движение нескольких тел»
  16. ЗАДАЧИ ПОСЛОЖНЕЕ
  17. Алгоритм решения ЗАДАЧИ на Прямолинейное равномерное движение.
  18. Формула скорости
  19. Определение и формула скорости
  20. Скорость в разных системах координат
  21. Частные случаи формул для вычисления скорости
  22. Единицы измерения скорости
  23. Примеры решения задач
  24. 💥 Видео

Видео:Уравнение координат при равноускоренном движенииСкачать

Уравнение координат при равноускоренном движении

Введение

Выводы приведенных ниже формул и изложение теории приводится на странице “Кинематика материальной точки”. Здесь мы применим основные результаты этой теории к координатному способу задания движения материальной точки.

Пусть мы имеем неподвижную прямоугольную систему координат с центром в неподвижной точке . При этом положение точки M однозначно определяются ее координатами (x, y, z). Координатный способ задания движения точки – это такой способ, при котором заданы зависимости координат от времени. То есть заданы три функции от времени (при трехмерном движении):

Далее мы приводим формулы вычисления кинематических величин и пример решения задачи для координатного способа задания движения.

Видео:Кинематика. Из координаты получаем скорость и ускорениеСкачать

Кинематика. Из координаты получаем скорость и ускорение

Определение кинематических величин

Зная зависимости координат от времени , мы автоматически определяем радиус-вектор материальной точки M по формуле:
,
где – единичные векторы (орты) в направлении осей x, y, z .

Дифференцируя по времени , находим проекции скорости и ускорения на оси координат:
;
;
Модули скорости и ускорения:
;
.

Единичный вектор в направлении касательной к траектории:
.
Его можно определить двумя способами – по направлению скорости, или в противоположную сторону. Поэтому здесь в знаменателе стоит не модуль скорости, а алгебраическая величина скорости, которая, по абсолютной величине, равна модулю скорости, но может принимать как положительные, так и отрицательные значения: . Она является проекцией скорости на направление единичного вектора .

Алгебраическая величина тангенциального (касательного) ускорения – это проекция полного ускорения на направление единичного вектора касательной к траектории:
.
Вектор тангенциального (касательного) ускорения:
.
Здесь также, как и для скорости, – это скалярная величина, которая может принимать как положительные так и отрицательные значения: .

Нормальное ускорение:
.
Вектор нормального ускорения:
; .
Единичный вектор в направлении главной нормали траектории (то есть единичный вектор, перпендикулярный касательной и направленный к центру кривизны траектории):
.
Здесь – это модуль нормального ускорения: . Нормальное ускорение всегда направлено к центру кривизны траектории. Оно не может быть направлено в противоположную сторону.

Радиус кривизны траектории:
.
Центр кривизны траектории:
.

Единичный вектор в направлении бинормали:
.

Видео:Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Пример решения задачи

Определение скорости и ускорения точки по заданным уравнениям ее движения

По заданным уравнениям движения точки установить вид ее траектории и для момента времени найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Уравнения движения точки:
, см;
, см.

Решение

Определение вида траектории

Исключаем время из уравнений движения. Для этого перепишем их в виде:
; .
Применим формулу:
.
;
;
;
.

Итак, мы получили уравнение траектории:
.
Это уравнение параболы с вершиной в точке и осью симметрии .

Поскольку
, то
; или
.
Аналогичным образом получаем ограничение для координаты :
;
;

Таким образом, траекторией движения точки является дуга параболы
,
расположенная при
и .

Строим параболу по точкам.

06
± 35,625
± 64,5
± 92,625
± 120

Определяем положение точки в момент времени .
;
.

Как найти скорость из уравнения координаты

Определение скорости точки

Дифференцируя координаты и по времени , находим компоненты скорости.
.
Чтобы продифференцировать , удобно применить формулу тригонометрии:
. Тогда
;
.

Вычисляем значения компонент скорости в момент времени :
;
.
Модуль скорости:
.

Определение ускорения точки

Дифференцируя компоненты скорости и по времени , находим компоненты ускорения точки.
;
.

Вычисляем значения компонент ускорения в момент времени :
;
.
Модуль ускорения:
.

Алгебраическая величина тангенциального ускорения – это проекция полного ускорения на направление единичного вектора касательной к траектории. Выберем направление совпадающим с направлением скорости . Тогда ; алгебраическая величина тангенциального ускорения – это проекция полного ускорения на направление скорости :
.
Поскольку , то вектор тангенциального ускорения направлен противоположно скорости .

Нормальное ускорение:
.
Вектор и направлен в сторону центра кривизны траектории.

Радиус кривизны траектории:
.

Траекторией движения точки является дуга параболы
; .
Скорость точки: .
Ускорение точки: ; ; .
Радиус кривизны траектории: .

Определение остальных величин

При решении задачи мы нашли:
вектор и модуль скорости:
; ;
вектор и модуль полного ускорения:
; ;
тангенциальное и нормальное ускорения:
; ;
радиус кривизны траектории: .

Определим остальные величины.

Единичный вектор в направлении касательной к траектории:
.
Вектор тангенциального ускорения:

.
Вектор нормального ускорения:

.
Единичный вектор в направлении главной нормали:
.
Координаты центра кривизны траектории:

.

Введем третью ось системы координат перпендикулярно осям и . В трехмерной системе
; .
Единичный вектор в направлении бинормали:

.

Автор: Олег Одинцов . Опубликовано: 22-02-2016 Изменено: 29-01-2020

Видео:Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать

Урок 18 (осн). Координаты тела. График движения. График скорости

Как найти скорость из уравнения координаты

1 мин = 60 с; 1 ч = 3600 с; 1 км = 1000 м; 1 м/с = 3,6 км/ч.

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

Типовая задача «Уравнение координаты (нахождение неизвестной величины)»

Задача № 1. В начальный момент времени тело находилось в точке с координатой 5 м, а через 2 мин от начала движения — в точке с координатой 95 м. Определите скорость тела и его перемещение.

Как найти скорость из уравнения координаты

Типовая задача «Уравнение координаты. Движение двух тел»

Задача № 2. Движение двух тел задано уравнениями x1 = 20 – 8t и х2 = –16 + 10t (время измеряется в секундах, координата — в метрах). Определите для каждого тела начальную координату, проекцию скорости, направление скорости. Вычислите время и место встречи тел.

Как найти скорость из уравнения координаты

Типовая задача «График координаты»

Задача № 3. Движение тела задано графиком координаты (зависимости координаты от времени). По графику определите: а) начальную координату тела; б) проекцию скорости тела; в) направление движения тела (по оси х или против оси х); г) запишите уравнение координаты.

Как найти скорость из уравнения координаты

Как найти скорость из уравнения координаты

Типовая задача «График координаты. Движение нескольких тел»

Задача № 4. На рисунке изображены графики движения трех тел. Изучив рисунок, для каждого тела определите: а) начальную координату; б) скорость; в) направление движения; г) запишите уравнение координаты.

Как найти скорость из уравнения координаты

Как найти скорость из уравнения координаты

ЗАДАЧИ ПОСЛОЖНЕЕ

Задача № 5. На рисунке представлены графики зависимости координаты х от времени t для пяти тел. Определите скорости этих тел. Проанализируйте точки пересечения графиков. Постройте графики зависимости скорости от времени.

Как найти скорость из уравнения координаты

РЕШЕНИЕ:
Как найти скорость из уравнения координаты

Задача № 6. По графикам на рисунке напишите уравнения движения x = x(t) . Из уравнений и графиков найдите координаты тел через 5 с , скорости движения тел, время и место встречи второго и третьего тел.

Как найти скорость из уравнения координаты

РЕШЕНИЕ:
Как найти скорость из уравнения координаты

Задача № 7. ОГЭ Расстояние ( S ) между городами М и К = 250 км . Одновременно из обоих городов навстречу друг другу выезжают автомашины. Машина из города М движется со скоростью = 60 км/ч , из города К — со скоростью ν2 = 40 км/ч . Построить график зависимости пути от времени для каждой из машин и по ним определить место встречи и время их движения до встречи.

Как найти скорость из уравнения координаты

Задача № 8. ЕГЭ Скорость течения реки vp = 1 м/с , скорость лодки относительно воды v0 = 2 м/с . Под каким углом к берегу следует держать курс, чтобы лодка двигалась перпендикулярно берегу? За какое время t она переправится через реку, ширина которой d = 200 м ?

Как найти скорость из уравнения координаты

Алгоритм решения ЗАДАЧИ на Прямолинейное равномерное движение.

Задачи, описывающие движение, содержат два типа величин: векторные (имеющие направление) и скалярные (выражающиеся только числом). К векторным величинам при описании равномерного прямолинейного движения относятся скорость и перемещение.

Для перехода от векторов к скалярам выбирают координатную ось и находят проекции векторов на эту ось, руководствуясь следующим правилом: если вектор сонаправлен с осью, то его проекция положительна, если противоположно направлен — отрицательна. (Могут быть и более сложные случаи, когда вектор не параллелен координатной оси, а направлен к ней под некоторым углом.) Поэтому при решении задачи обязательно нужно сделать чертеж, на котором изобразить направления всех векторов и координатную ось. При записи «дано» следует учитывать знаки проекций.

При решении задач все величины должны выражаться в международной системе единиц (СИ), если нет специальных оговорок.

В решении задачи единицы величин не пишутся, а записываются только после найденного значения величины.

Это конспект по теме «ЗАДАЧИ на Прямолинейное равномерное движение с решениями». Выберите дальнейшие действия:

Видео:Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Формула скорости

Видео:Скорость и ускорение точки в полярных координатахСкачать

Скорость и ускорение точки в полярных координатах

Определение и формула скорости

Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора $bar$ точки по времени (t). Обозначают скорость обычно буквой v. Это векторная величина. Математически определение вектора мгновенной скорости записывается как:

Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения. Модуль скорости можно определить как первую производную от длины пути (s) по времени:

Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.

Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Уравнение движения тела дано в виде x=2−3t. Вычисли

Скорость в разных системах координат

Проекции скорости на оси декартовой системы координат запишутся как:

Следовательно, вектор скоростив декартовых координатах можно представить:

где $bar, bar, bar$ единичные орты. При этом модуль вектора скорости находят при помощи формулы:

В цилиндрических координатах модуль скорости вычисляют при помощи формулы:

в сферической системе координат:

Видео:Физика - перемещение, скорость и ускорение. Графики движения.Скачать

Физика - перемещение, скорость и ускорение. Графики движения.

Частные случаи формул для вычисления скорости

Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const). При равномерном движении скорость можно вычислить, применяя формулу:

где s– длина пути, t – время, за которое материальная точка преодолела путь s.

При ускоренном движении скорость можно найти как:

Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:

где $bar_0$ – начальная скорость движения, $bar = const$ .

Видео:Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | ИнфоурокСкачать

Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | Инфоурок

Единицы измерения скорости

Основной единицей измерения скорости в системе СИ является: [v]=м/с 2

Видео:уравнение координаты материальной точки при равноускоренном движенииСкачать

уравнение координаты материальной точки при равноускоренном движении

Примеры решения задач

Задание. Движение материальной точки А задано уравнением: $x=2 t^-4 t^$ . Точка начала свое движение при t0=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.

Как найти скорость из уравнения координаты

Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:

Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент времении сравним результат с нулем:

Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.

Ответ. Против оси X.

Как найти скорость из уравнения координаты

Задание. Скорость материальной точки является функцией от времени вида:

где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии 10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.

Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:

Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:

Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:

$$ begin 10 t-t^=10(2.2) \ t_=5+sqrt approx 8,8(c) ; t_=5-sqrt approx 1,13(c) end $$

Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:

При решении уравнения (2.3) нам подойдет корень равный:

Ответ. 1) $x=0 mathrm<

m>$ 2) $t_=8,8 mathrm, t_=1,13 c, t_=11 c$

💥 Видео

Как найти проекцию вектора скорости и ускорения. Выполнялка 112Скачать

Как найти проекцию вектора скорости и ускорения. Выполнялка 112

Уравнение движенияСкачать

Уравнение движения

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 класс

РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 ПерышкинСкачать

РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 Перышкин

Кинематика. Практика 1 - Уравнения координаты и скоростиСкачать

Кинематика. Практика 1 - Уравнения координаты и скорости

Определение координаты движущегося тела | Физика 9 класс #3 | ИнфоурокСкачать

Определение координаты движущегося тела | Физика 9 класс #3 | Инфоурок

Траектория и уравнения движения точки. Задача 1Скачать

Траектория и уравнения движения точки. Задача 1

Скорость и перемещение при прямолинейном равноускоренном движении. 9 класс.Скачать

Скорость и перемещение при прямолинейном равноускоренном движении. 9 класс.

Урок 12. Равномерное прямолинейное движениеСкачать

Урок 12. Равномерное прямолинейное движение

Равномерное прямолинейное движение - физика 9Скачать

Равномерное прямолинейное движение - физика 9
Поделиться или сохранить к себе: