Как найти расстояние между прямыми если даны их уравнения

Расстояние между двумя параллельными прямыми – определение и примеры нахождения.

В этой статье дано определение расстояния между двумя параллельными прямыми на плоскости и в трехмерном пространстве, а также разобран метод координат, позволяющий вычислять расстояние между параллельными прямыми. Сначала приведена необходимая теория, после чего приведены подробные решения примеров и задач, в которых находится расстояние между двумя параллельными прямыми.

Навигация по странице.

Видео:Расстояние между скрещивающимися прямымиСкачать

Расстояние между скрещивающимися прямыми

Расстояние между двумя параллельными прямыми – определение.

Определение расстояния между двумя параллельными прямыми дается через расстояние от точки до прямой.

Расстояние между двумя параллельными прямыми – это расстояние от произвольной точки одной из параллельных прямых до другой прямой.

Для наглядности изобразим две параллельные прямые a и b , отметим на прямой а произвольную точку М1 , опустим перпендикуляр из точки М1 на прямую b , обозначив его H1 . Отрезок М1H1 соответствует расстоянию между параллельными прямыми a и b .

Как найти расстояние между прямыми если даны их уравнения

Приведенное определение расстояния между двумя параллельными прямыми справедливо как для параллельных прямых на плоскости, так и для прямых в трехмерном пространстве. Более того, такое определение расстояния между двумя параллельными прямыми принято не случайно. Оно тесно связано со следующей теоремой.

Все точки одной из двух параллельных прямых удалены на одинаковое расстояние от другой прямой.

Рассмотрим параллельные прямые a и b . Отметим на прямой a точку М1 , опустим из нее перпендикуляр на прямую b . Основание этого перпендикуляра обозначим как H1 . Тогда длина перпендикуляра М1H1 есть расстояние между параллельными прямыми a и b по определению. Докажем, что Как найти расстояние между прямыми если даны их уравненияравно Как найти расстояние между прямыми если даны их уравнения, где М2 – произвольная точка прямой a , отличная от точки M1 , а H2 – основание перпендикуляра, проведенного из точки М2 на прямую b . Доказав этот факт, мы докажем и саму теорему.

Как найти расстояние между прямыми если даны их уравнения

Так как внутренние накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей, равны (об этом говорилось в статье параллельные прямые, параллельность прямых), то Как найти расстояние между прямыми если даны их уравнения, а прямая M2H2 , перпендикулярная прямой b по построению, перпендикулярна и прямой a . Тогда треугольники М1H1H2 и М2М1H2 прямоугольные, и, более того, они равны по гипотенузе и острому углу: М1H2 – общая гипотенуза, Как найти расстояние между прямыми если даны их уравнения. Из равенства треугольников следует равенство их соответствующих сторон, поэтому, Как найти расстояние между прямыми если даны их уравнения. Теорема доказана.

Следует заметить, что расстояние между двумя параллельными прямыми является наименьшим из расстояний от точек одной прямой до точек другой прямой.

Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямыми

Нахождение расстояния между параллельными прямыми – теория, примеры, решения.

Итак, нахождение расстояния между параллельными прямыми сводится к нахождению длины перпендикуляра, проведенного из некоторой точки одной из прямых на другую прямую. При этом подбирается метод, позволяющий это расстояние отыскать. Выбор метода зависит от условий конкретной задачи. В некоторых случаях можно использовать теорему Пифагора, в других — признаки равенства или подобия треугольников, определения синуса, косинуса или тангенса угла и т.п. Если же параллельные прямые заданы в прямоугольной системе координат, то расстояние между заданными параллельными прямыми можно вычислить методом координат. На нем и остановимся.

Сформулируем условие задачи.

Пусть на плоскости или в трехмерном пространстве зафиксирована прямоугольная система координат, заданы две параллельные прямые a и b и требуется найти расстояние между этими прямыми.

Решение этой задачи строится на определении расстояния между параллельными прямыми — чтобы найти расстояние между двумя заданными параллельными прямыми нужно:

  • определить координаты некоторой точки М1 , лежащей на прямой a (или на прямой b );
  • вычислить расстояние от точки М1 до прямой b (или a ).

С определением координат точки М1 , лежащей на какой-нибудь из заданных параллельных прямых, проблем не возникнет, если, конечно, Вам знакомы основные виды уравнения прямой на плоскости и уравнения прямой в пространстве. Для нахождения расстояния от точки М1 до нужной из заданных параллельных прямых Вам будет полезна информация из раздела нахождение расстояния от точки до прямой.

В частности, если в прямоугольной системе координат Oxy на плоскости прямую a задает общее уравнение прямой вида Как найти расстояние между прямыми если даны их уравнения, а прямую b , параллельную прямой a , — общее уравнение прямой Как найти расстояние между прямыми если даны их уравнения, то расстояние Как найти расстояние между прямыми если даны их уравнениямежду этими параллельными прямыми можно вычислить по формуле Как найти расстояние между прямыми если даны их уравнения.

Покажем вывод этой формулы.

Возьмем точку Как найти расстояние между прямыми если даны их уравнения, которая лежит на прямой a , тогда координаты точки М1 удовлетворяют уравнению Как найти расстояние между прямыми если даны их уравнения, то есть, справедливо равенство Как найти расстояние между прямыми если даны их уравнения, откуда имеем Как найти расстояние между прямыми если даны их уравнения.

Если Как найти расстояние между прямыми если даны их уравнения, то нормальное уравнение прямой b имеет вид Как найти расстояние между прямыми если даны их уравнения, а если Как найти расстояние между прямыми если даны их уравнения, то нормальное уравнение прямой b имеет вид Как найти расстояние между прямыми если даны их уравнения. Тогда при Как найти расстояние между прямыми если даны их уравнениярасстояние от точки Как найти расстояние между прямыми если даны их уравнениядо прямой b вычисляется по формуле Как найти расстояние между прямыми если даны их уравнения, а при Как найти расстояние между прямыми если даны их уравнения— по формуле
Как найти расстояние между прямыми если даны их уравнения

То есть, при любом значении С2 расстояние Как найти расстояние между прямыми если даны их уравненияот точки Как найти расстояние между прямыми если даны их уравнениядо прямой b можно вычислить по формуле Как найти расстояние между прямыми если даны их уравнения. А если учесть равенство Как найти расстояние между прямыми если даны их уравнения, которое было получено выше, то последняя формула примет вид Как найти расстояние между прямыми если даны их уравнения. На этом вывод формулы для вычисления расстояние между двумя параллельными прямыми, заданными общими уравнениями прямых вида Как найти расстояние между прямыми если даны их уравненияи Как найти расстояние между прямыми если даны их уравнениязавершен.

Разберем решения примеров.

Начнем с нахождения расстояния между двумя параллельными прямыми, заданными в прямоугольной системе координат Oxy на плоскости.

Найдите расстояние между параллельными прямыми Как найти расстояние между прямыми если даны их уравненияи Как найти расстояние между прямыми если даны их уравнения.

Очевидно, что прямая, которой соответствуют параметрические уравнения прямой на плоскости вида Как найти расстояние между прямыми если даны их уравнения, проходит через точку Как найти расстояние между прямыми если даны их уравнения.

Искомое расстояние между параллельными прямыми равно расстоянию от точки Как найти расстояние между прямыми если даны их уравнениядо прямой Как найти расстояние между прямыми если даны их уравнения. Вычислим его.

Получим нормальное уравнение прямой, которой отвечает уравнение прямой с угловым коэффициентом вида Как найти расстояние между прямыми если даны их уравнения. Для этого сначала запишем общее уравнение прямой: Как найти расстояние между прямыми если даны их уравнения. Теперь вычислим нормирующий множитель: Как найти расстояние между прямыми если даны их уравнения. Умножив на него обе части последнего уравнения, имеем нормальное уравнение прямой: Как найти расстояние между прямыми если даны их уравнения. Искомое расстояние равно модулю значения выражения Как найти расстояние между прямыми если даны их уравнения, вычисленного при Как найти расстояние между прямыми если даны их уравнения. Итак, расстояние между заданными параллельными прямыми равно
Как найти расстояние между прямыми если даны их уравнения

Второй способ решения.

Получим общие уравнения заданных параллельных прямых.

Выше мы выяснили, что прямой Как найти расстояние между прямыми если даны их уравнениясоответствует общее уравнение прямой Как найти расстояние между прямыми если даны их уравнения. Перейдем от параметрических уравнений прямой вида Как найти расстояние между прямыми если даны их уравненияк общему уравнению этой прямой:
Как найти расстояние между прямыми если даны их уравнения

Коэффициенты при переменных x и y в полученных общих уравнениях параллельных прямых равны, поэтому мы сразу можем применить формулу для вычисления расстояния между параллельными прямыми на плоскости: Как найти расстояние между прямыми если даны их уравнения.

Как найти расстояние между прямыми если даны их уравнения.

На плоскости введена прямоугольная система координат Oxy и даны уравнения двух параллельных прямых Как найти расстояние между прямыми если даны их уравненияи Как найти расстояние между прямыми если даны их уравнения. Найдите расстояние между указанными параллельными прямыми.

Канонические уравнения прямой на плоскости вида Как найти расстояние между прямыми если даны их уравненияпозволяют сразу записать координаты точки М1 , лежащей на этой прямой: Как найти расстояние между прямыми если даны их уравнения. Расстояние от этой точки до прямой Как найти расстояние между прямыми если даны их уравненияравно искомому расстоянию между параллельными прямыми. Уравнение Как найти расстояние между прямыми если даны их уравненияявляется нормальным уравнением прямой, следовательно, мы можем сразу вычислить расстояние от точки Как найти расстояние между прямыми если даны их уравнениядо прямой Как найти расстояние между прямыми если даны их уравнения: Как найти расстояние между прямыми если даны их уравнения.

Второй способ решения.

Общее уравнение одной из заданных параллельных прямых нам уже дано Как найти расстояние между прямыми если даны их уравнения. Приведем каноническое уравнение прямой Как найти расстояние между прямыми если даны их уравненияк общему уравнению прямой: Как найти расстояние между прямыми если даны их уравнения. Коэффициенты при переменной x в общих уравнениях заданных параллельных прямых равны (при переменной y коэффициенты тоже равны — они равны нулю), поэтому можно применять формулу, позволяющую вычислить расстояние между заданными параллельными прямыми: Как найти расстояние между прямыми если даны их уравнения.

Осталось рассмотреть пример нахождения расстояния между параллельными прямыми в трехмерном пространстве.

Найдите расстояние между двумя параллельными прямыми, которым в прямоугольной системе координат Oxyz соответствуют канонические уравнения прямой в пространстве вида Как найти расстояние между прямыми если даны их уравненияи Как найти расстояние между прямыми если даны их уравнения.

Очевидно, прямая Как найти расстояние между прямыми если даны их уравненияпроходит через точку Как найти расстояние между прямыми если даны их уравнения. Вычислим расстояние Как найти расстояние между прямыми если даны их уравненияот этой точки до прямой Как найти расстояние между прямыми если даны их уравнения— оно даст нам искомое расстояние между параллельными прямыми.

Прямая Как найти расстояние между прямыми если даны их уравненияпроходит через точку Как найти расстояние между прямыми если даны их уравнения. Обозначим направляющий вектор прямой Как найти расстояние между прямыми если даны их уравнениякак Как найти расстояние между прямыми если даны их уравнения, он имеет координаты Как найти расстояние между прямыми если даны их уравнения. Вычислим координаты вектора Как найти расстояние между прямыми если даны их уравнения(при необходимости смотрите статью координаты вектора по координатам точек): Как найти расстояние между прямыми если даны их уравнения. Найдем векторное произведение векторов Как найти расстояние между прямыми если даны их уравненияи Как найти расстояние между прямыми если даны их уравнения:
Как найти расстояние между прямыми если даны их уравнения

Теперь осталось применить формулу, позволяющую вычислить расстояние от точки до прямой в пространстве: Как найти расстояние между прямыми если даны их уравнения.

расстояние между заданными параллельными прямыми равно Как найти расстояние между прямыми если даны их уравнения.

Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать

Видеоурок "Расстояние между прямыми в пространстве"

Расстояние между двумя параллельными прямыми: определение и примеры нахождения

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Видео:Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекции

Расстояние между двумя параллельными прямыми: определение

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности: Как найти расстояние между прямыми если даны их уравнения

На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .

Как найти расстояние между прямыми если даны их уравнения

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Видео:✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать

✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис Трушин

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;

— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M 1 H 1 = C 2 — C 1 A 2 + B 2

Выведем эту формулу.

Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .

Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:

A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0

При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:

A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0

И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .

А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.

Разберем теорию на примерах.

Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0

Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .

При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:

2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13

Ответ: 20 13 .

В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8

Ответ: 8 .

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .

Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :

M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4

Вычислим векторное произведение векторов :

b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )

Применим формулу расчета расстояния от точки до прямой в пространстве:

M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2

Видео:Расстояние между параллельными прямымиСкачать

Расстояние между параллельными прямыми

Расстояние между прямыми в пространстве онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:14. Угол между прямыми в пространствеСкачать

14. Угол между прямыми в пространстве

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

Как найти расстояние между прямыми если даны их уравнения.(1)
Как найти расстояние между прямыми если даны их уравнения,(2)

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Как найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравнения

которое и является расстоянием между прямыми L1 и L2 (Рис.1).

Как найти расстояние между прямыми если даны их уравнения

Пример 1. Найти расстояние между прямыми L1 и L2:

Как найти расстояние между прямыми если даны их уравнения(3)
Как найти расстояние между прямыми если даны их уравнения(4)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.

Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:

m2<xx1)+p2(yy1)+ l2(zz1)=0(5)
2(x−1)−4(y−2)+ 8(z−1)=0

После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:

2x−4y+ 8z−2=0(6)

Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.

Как найти расстояние между прямыми если даны их уравнения

Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:

Как найти расстояние между прямыми если даны их уравнения(7)

Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):

Как найти расстояние между прямыми если даны их уравнения

Решив уравнение получим:

Как найти расстояние между прямыми если даны их уравнения(8)

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:

Как найти расстояние между прямыми если даны их уравнения

Остается найти расстояние между точками M1 и M3:

Как найти расстояние между прямыми если даны их уравнения
Как найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравнения

Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов Как найти расстояние между прямыми если даны их уравненияи q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.

Как найти расстояние между прямыми если даны их уравнения

Вычислим координаты вектора Как найти расстояние между прямыми если даны их уравнения:

Как найти расстояние между прямыми если даны их уравнения

Вычислим векторное произведение векторов Как найти расстояние между прямыми если даны их уравненияи q1:

Как найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравнения

Вычисляя определители второго порядка находим координаты вектора c:

Далее находим площадь параллелограмма:

Как найти расстояние между прямыми если даны их уравнения.

Расстояние между прямыми L1 и L2 равно:

Как найти расстояние между прямыми если даны их уравнения,
Как найти расстояние между прямыми если даны их уравнения,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Как найти расстояние между прямыми если даны их уравнения(25)
Как найти расстояние между прямыми если даны их уравнения(26)
q1=<m1, p1, l1>=
q2=<m2, p2, l2>=

Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор Как найти расстояние между прямыми если даны их уравнения=<x2x1, y2y1, z2z1>=.

Вычислим векторное произведение векторов Как найти расстояние между прямыми если даны их уравненияи q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов Как найти расстояние между прямыми если даны их уравненияи q1:

Как найти расстояние между прямыми если даны их уравнения

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов Как найти расстояние между прямыми если даны их уравненияи q1:

Как найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравнения

Таким образом, результатом векторного произведения векторов Как найти расстояние между прямыми если даны их уравненияи q1 будет вектор:

Как найти расстояние между прямыми если даны их уравнения

Поскольку векторное произведение векторов Как найти расстояние между прямыми если даны их уравненияи q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :

Как найти расстояние между прямыми если даны их уравненияКак найти расстояние между прямыми если даны их уравнения Как найти расстояние между прямыми если даны их уравнения

Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).

Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).

Как найти расстояние между прямыми если даны их уравнения

Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:

A1x1+B1y1+C1z1+D1=0.(27)

где n1=<A1, B1, C1> − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

A1m1+B1p1+C1l1=0.(28)

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

A1m2+B1p2+C1l2=0.(29)

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение

A1x+B1y+C1z+D1=0.(30)

получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).

Аналогичным образом находим уравнение плоскости α2:

A2x+B2y+C2z+D2=0.(31)

Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1=<A1, B1, C1> и n2=<A2, B2, C2> этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

Как найти расстояние между прямыми если даны их уравнения.

Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.

Пример 3. Найти расстояние между прямыми

Как найти расстояние между прямыми если даны их уравнения(32)
Как найти расстояние между прямыми если даны их уравнения(33)

Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.

Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1=<m1, p1, l1> плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

A1x1+B1y1+C1z1+D1=0.(34)

а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:

A1m1+B1p1+C1l1=0.(35)

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

A1m2+B1p2+C1l2=0.(36)
A1·2+B1·1+C1·4+D1=0.(37)
A1·1+B1·3+C1·(−2)=0.(38)
A1·2+B1·(−3)+C1·7=0.(39)

Представим эти уравнения в матричном виде:

Как найти расстояние между прямыми если даны их уравнения(40)
Как найти расстояние между прямыми если даны их уравнения(41)

Искомая плоскость может быть представлена формулой:

A1x+B1y+C1z+D1=0.(42)
Как найти расстояние между прямыми если даны их уравнения

Упростим уравнение, умножив на число 17.

Как найти расстояние между прямыми если даны их уравнения(43)

Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.

Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2=<m2, p2, l2> плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:

A2x2+B2y2+C2z2+D2=0.(44)

а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:

A2m2+B2p2+C2l2=0.(45)

Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:

A2m1+B2p1+C2l1=0.(46)
A1·6+B1·(−1)+C1·2+D1=0.(47)
A1·2+B1·(−3)+C1·7=0.(48)
A1·1+B1·3+C1·(−2)=0.(49)

Представим эти уравнения в матричном виде:

Как найти расстояние между прямыми если даны их уравнения(50)
Как найти расстояние между прямыми если даны их уравнения(51)

Искомая плоскость может быть представлена формулой:

A2x+B2y+C2z+D2=0.(52)
Как найти расстояние между прямыми если даны их уравнения

Упростим уравнение, умножив на число −83.

Как найти расстояние между прямыми если даны их уравнения(53)

Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).

Запишем формулы уравнений плоскостей α1 и α2 :

A1x+B1y+C1z+D1=0.
A2x+B2y+C2z+D2=0.

Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:

Как найти расстояние между прямыми если даны их уравнения(54)
Как найти расстояние между прямыми если даны их уравнения

Упростим и решим:

Как найти расстояние между прямыми если даны их уравнения

Расстояние между прямыми равно: d=4.839339

🔥 Видео

Стереометрия ЕГЭ. Метод координат. Часть 5 из 5. Расстояние между прямымиСкачать

Стереометрия ЕГЭ. Метод координат. Часть 5 из 5. Расстояние между прямыми

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.

Метод координат. Урок № 9. Нахождение расстояния между двумя скрещивающимися прямыми.Скачать

Метод координат.  Урок № 9. Нахождение расстояния между двумя скрещивающимися прямыми.

найти уравнения биссектрис углов между прямымиСкачать

найти уравнения биссектрис углов между прямыми

✓ Расстояние между прямыми | ЕГЭ-2016. Задание 14. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Расстояние между прямыми | ЕГЭ-2016. Задание 14. Математика. Профильный уровень | Борис Трушин

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

#31. Как найти расстояние между скрещивающимися прямыми?Скачать

#31. Как найти расстояние между скрещивающимися прямыми?

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащимиСкачать

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

Расстояние между скрещивающимися прямыми #2Скачать

Расстояние между скрещивающимися прямыми #2
Поделиться или сохранить к себе: