Формула. Объём шара:
V = | 4 | π R 3 = | 1 | π D 3 |
3 | 6 |
S = 4 π R 2 = π D 2
- Уравнение сферы
- Основные свойства сферы и шара
- Секущая, хорда, секущая плоскость сферы и их свойства
- Касательная, касательная плоскость к сфере и их свойства
- Урок «Сфера. Уравнение сферы»
- Площадь поверхности шара формула и калькулятор онлайн
- Что такое шар?
- Формулы для вычисления радиуса
- V = 4/3 πr3,
- Определение радиуса сферы при помощи площади ее поверхности
- Важные измерения
- Шар, сфера и их части
- Объем шара через длину окружности
- Уравнение сферы
- Определение радиуса сферы при помощи объема шара
- Определение основных величин
- r = С / 2π
- Нахождение радиуса по расстоянию между двумя точками
- C = πD = 2πr
- Через площадь поверхности
- Одиннадцать свойств
Видео:11 класс, 20 урок, Уравнение сферыСкачать
Уравнение сферы
x 2 + y 2 + z 2 = R 2
( x — x 0) 2 + ( y — y 0) 2 + ( z — z 0) 2 = R 2
Видео:№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2Скачать
Основные свойства сферы и шара
Видео:Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферыСкачать
Секущая, хорда, секущая плоскость сферы и их свойства
d m между секущей плоскостью и центром сферы всегда меньше радиуса R:
m r такого круга можно найти по формуле:
где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.
Видео:Площадь сферыСкачать
Касательная, касательная плоскость к сфере и их свойства
Формула. Объём сегмента сферы с высотой h через радиус сферы R:
V = | h 2 π | (3R — h ) |
3 |
S = π R(2 h + √ 2 h R — h 2 )
Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):
V = | 2 π R 2 h |
3 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:№576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0),Скачать
Урок «Сфера. Уравнение сферы»
Краткое описание документа:
ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:
Продолжаем изучение сферы.
На прошлых занятиях вы познакомились с определением сферы и шара.
Вспомним, что сферой называется поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки.
Данная точка — центр сферы.
Заданное расстояние — радиус сферы.
Прежде чем вывести уравнение сферы, познакомимся с понятием уравнения поверхности в пространстве.
Зададим прямоугольную систему координат Оxyz и некоторую поверхность F.
Уравнением поверхности F называется уравнение с тремя переменными x, y, z, если этому уравнению удовлетворяют координаты всех точек поверхности F и не удовлетворяют координаты точки, не принадлежащей этой поверхности.
1.Рассмотрим сферу радиуса R и с центром С(x0; y0; z0).
2.Найдём расстояние от произвольной точки М(x; y; z) до центра С( x0 ; y0 ; z0) по формуле для вычисления расстояния между двумя точками с заданными координатами.
3. Если точка М лежит на сфере, то отрезок МС равен радиусу R, то есть
4.В случае если точка М не принадлежит данной сфере, то R≠МС, значит, координаты точки М не удовлетворяют уравнению R2=(x-x0)2+(y-y0)2+(z-z0)2.
5. Таким образом, в прямоугольной системе координат Оxyz уравнение сферы с центром
С (x0 ; y0 ; z0) и радиусом R имеет вид:
Применим полученные знания при решении задач.
Записать уравнение сферы с центром в точке А, которая проходит через точку N, если А(-2;2;0) и N(5;0;-1).
1.Запишем уравнение сферы с центром
А (x0 ; y0 ; z0) и радиусом R:
2.Подставим соответствующие координаты центра сферы А в данное уравнение:
Уравнение сферы с центром в точке А с координатами (-2;2;0) примет вид:
3.Так как сфера проходит через точку N с координатами (5;0;-1), то её координаты удовлетворяют уравнению сферы, подставим координаты этой точки в полученное уравнение:
Таким образом, уравнение сферы с центром в точке А, которая проходит через точку N имеет вид:
Сфера задана уравнением:
1) Найти координаты центра и радиус сферы;
2) Найти значение m, при котором точки
А (0; m;2) и В (1;1; m-2) принадлежат данной сфере.
1. Уравнение данной сферы имеет вид:
x2+ y2+ z2+2y-4z=4 или x2+ y2+2y + z2-4z=4
Выделим полный квадрат для переменных y и z, для этого прибавим и одновременно вычтем 1 и 4 в левой части уравнения:
x2+ y2+2y+1-1 + z2-4z+4-4=4
Уравнение примет вид:
x2+( y+1)2+( z-2)2-5=4 или
Таким образом, центр сферы имеет координаты:
О (0;-1;2), радиус равен R=√9=3
2.Уравнение сферы с центром в точке О (0;-1;2) и радиусом R=3 имеет вид:
Точки А (0; m;2) и В (1;1; m-2) принадлежат данной сфере, значит их координаты удовлетворяют уравнению сферы. Подставим координаты этих точек в уравнение сферы и решим систему уравнений:
Упростим полученные уравнения, раскрывая скобки и приводя подобные слагаемые:
Таким образом, мы получили 4 значения m:
Несложно проверить, что при m=-4 и m=6 координаты точек А и В не удовлетворяют уравнению сферы. Проверьте самостоятельно.
Итак, при m=2 точки А (0; m;2) и В (1;1; m-2) принадлежат сфере, заданной уравнением
x2+ y2+ z2+2y-4z=4 с центром в точке
О (0;-1;2) и радиусом R=3.
—> —>
Инфоурок |
07.11.2014 |
Геометрия |
Видеоурок |
51465 |
1003 |
© 2022 Проект «Уроки математики»
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено!
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако команда проекта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом на электронную почту службы поддержки сайта.
Видео:11 класс, 19 урок, Сфера и шарСкачать
Площадь поверхности шара формула и калькулятор онлайн
Видео:Быстро находим радиус описанной сферыСкачать
Что такое шар?
В стереометрии есть большой раздел, который называется фигуры вращения. Об этом редко говорят в школе, но плоские фигуры можно вращать вокруг какой-либо оси или точки. Так получаются объемные фигуры.
Стереометрия это наука о фигурах в пространстве. Простейшими единицами стереометрии является точка, прямая и плоскость.
Например, цилиндр образован вращением прямоугольника или квадрата. Поэтому, если рассечь цилиндр плоскостью, то сечение примет форму того самого квадрата или прямоугольника, который вращали, чтобы получить фигуру.
Так же и шар образован вращением. Как не трудно догадаться, основной для шара послужил круг. Причем сразу стоит сказать, что именно круг, а не окружность.
Следует понимать, что круг и окружность разные фигуры. Так окружность представляет собой набор точек равноудаленных от центра. Переводя на более простой язык окружность – это сама линия и центр окружности. А круг включает в себя и все внутреннее пространство. У окружности не может быть площади.
То есть, шар имеет какое-то внутренне заполненное пространство. Интересно, что сфера так же имеет пространство внутри, только условно полое.
Видео:Как достроить равногранный тетраэдр и найти радиус описанной сферыСкачать
Формулы для вычисления радиуса
- Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см. Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).
- Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см.
- Такая же формула используется при вычислении радиуса и длины окружности круга.
- Например, дан шар с объемом 100 см 3 . Радиус этого шара вычисляется так:
- ((V/π)(3/4)) 1/3 = r
- ((100/π)(3/4)) 1/3 = r
- ((31,83)(3/4)) 1/3 = r
- (23,87) 1/3 = r
- 2,88 см = r
- Например, дан шар с площадью поверхности 1200 см 3 . Радиус этого шара вычисляется так:
- √(A/(4π)) = r
- √(1200/(4π)) = r
- √(300/(π)) = r
- √(95,49) = r
- 9,77 см = r
Видео:№579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координатыСкачать
V = 4/3 πr3,
где V — объем, r — радиус шара.
Отсюда, радиус шара равен корню кубическому из объема шара деленного на три четвертых Пи:
Видео:Урок 5 Уравнение сферыСкачать
Определение радиуса сферы при помощи площади ее поверхности
Допустим, нам дана сфера вместе с площадью её поверхности. В таком случае мы будем использовать формулу площади её поверхности для того, чтобы вычислить радиус.
где S – это площадь поверхности сферы, число Пи = 3,14.
Видео:Площадь сферыСкачать
Важные измерения
Радиус (обозначается r) — единственное необходимое измерение. Это расстояние от любой точки на поверхности сферы до её центра. Самый длинный отрезок, равный двум r, называется диаметром (d). Земля называется сфероидом, потому что она очень близка к шару, но не идеально круглая. Она немного вытянута на северном и южном полюсах.
Впервые вычислить площадь (S) поверхности шара удалось Архимеду. Именно он установил, что для того, чтобы найти S любого трёхмерного объекта, необходимо измерить его радиус. Для сферы получилась следующая формула: S = 4 * π * r ². Для того чтобы понять, как это работает, следует рассмотреть пример. Известно, что радиус детского мяча 10 см. Остаётся ещё одна неизвестная — число π. Это математическая константа, которая выражает отношение длины окружности к её диаметру и равна примерно 3,14. Далее, следует подставить цифры в уравнение:
- S = 4 * 3,14 * 10²;
- S мяча равна ≈ 1256 см².
Таким образом, можно найти площадь сферы через её радиус по формуле, полученной ещё в античности. Ещё одна важная характеристика — это объём (V) фигуры. Он вычисляется следующим образом: V = (4/3) * π * r³. Если придерживаться условий задачи, то V мяча = (4/3) * 3,14 * 10³ равен ≈ 4187 см ³. Сейчас можно избежать длительных расчётов, если нужно узнать площадь сферы, онлайн-калькуляторы — сервисы, которые очень в этом помогают.
Сектор сферы — это слой между двумя правильными круговыми конусами, имеющими общую вершину в центре шара и общую ось.
Надо сказать, что внутренний конус может иметь основание с нулевым радиусом. Формула, по которой определяют площадь сектора, следующая: S = 2 * π * r * h, где h — высота. К слову, эта же формула применима, если необходимо найти S части шара, отрезанной плоскостью, то есть полусферы. Такая же формула применяется при нахождении S сегмента (часть между двумя параллельными плоскостями) и зоны сферы (изогнутая поверхность сферического сегмента).
Видео:Найти центр и радиус окружностиСкачать
Шар, сфера и их части
Введем следующие определения, связанные с шаром, сферой и их частями.
Определение 1. Сферой с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O равно r (рис. 1).
Определение 2. Шаром с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O не превосходит r (рис. 1).
Таким образом, сфера с центром в точке O и радиусом r является поверхностью шара с центром в точке O и радиусом r.
Замечание. Радиусом сферы ( радиусом шара ) называют отрезок, соединяющий любую точку сферы с центром сферы. Длину этого отрезка также часто называют радиусом сферы ( радиусом шара ).
Определение 3. Сферическим поясом (шаровым поясом) называют часть сферы , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).
Определение 4. Шаровым слоем называют часть шара , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).
Окружности, ограничивающие сферический пояс, называют основаниями сферического пояса.
Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называют высотой сферического пояса.
Из определений 3 и 4 следует, что шаровой слой ограничен сферическим поясом и двумя кругами, плоскости которых параллельны параллельны между собой. Эти круги называют основаниями шарового слоя.
Высотой шарового слоя называют расстояние между плоскостями расстояние между плоскостями оснований шарового слоя .
Определение 5. Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость (рис. 3).
Определение 6. Шаровым сегментом называют каждую из двух частей, на которые делит шар пересекающая ее плоскость (рис. 3).
Из определений 3 и 5 следут, что сферический сегмент представляет собой сферический пояс , у которого одна из плоскостей оснований касается сферы (рис. 4). Высоту такого сферического пояса и называют высотой сферического сегмента.
Соответственно, шаровой сегмент – это шаровой слой, у которого одна из плоскостей оснований касается шара (рис. 4). Высоту такого шарового слоя называют высотой шарового сегмента .
По той же причине всю сферу можно рассматривать как сферический пояс , у которого обе плоскости оснований касаются сферы (рис. 5). Соответственно, весь шар – это шаровой слой, у которого обе плоскости оснований касаются шара (рис. 5).
Определение 7. Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы (рис. 6).
Высотой шарового сектора называют высоту его сферического сегмента .
Замечание. Шаровой сектор состоит из шарового сегмента и конуса с общим основанием. Вершиной конуса является центр сферы .
Видео:Геометрия 11 класс (Урок№8 - Сфера и шар.)Скачать
Объем шара через длину окружности
Формула для нахождения объема шара через длину окружности: <V= dfrac> , где L — длина окружности шара.
Эта формула легко выводится формулы объема шара через его радиус и формулы для нахождения длины окружности
Видео:Геометрия. 10 класс. Уравнение сферы /16.03.2021/Скачать
Уравнение сферы
x 2 + y 2 + z 2 = R 2
( x – x 0) 2 + ( y – y 0) 2 + ( z – z 0) 2 = R 2
3. Параметрическое уравнение сферы с центром в точке ( x 0, y 0, z 0):
x = x 0 + R · sin θ · cos φ y = y 0 + R · sin θ · sin φ z = z 0 + R · cos θ
где θ ϵ [0, π ], φ ϵ [0,2 π ].
Видео:11 класс. Геометрия. Сфера и шар. Объем шара и площадь поверхности. 05.05.2020.Скачать
Определение радиуса сферы при помощи объема шара
Если нам дан объём шара, ограниченного сферой, то радиус находится так:
где V – это объём шара, число Пи = 3,14.
Видео:Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.Скачать
Определение основных величин
- Диаметр (D) – это отрезок, который соединяет две точки на поверхности шара и проходит через его центр (то есть это наибольшее расстояние между противоположными точками, лежащими на поверхности шара). Диаметр равен удвоенному радиусу.
- Длина окружности (С) представляет собой длину окружности большого круга, то есть круга, который образует секущая плоскость, проходящая через центр шара.
- Объем (V) – это значение трехмерного пространства, занимаемого шаром. [6]
- Площадь поверхности (А) – это значение двумерного (плоского) пространства, ограниченного поверхностью шара.
- Пи (π) – это постоянная, которая равна отношению длины окружности к ее диаметру. Первыми десятью цифрами этой постоянной являются 3,141592653, но зачастую число Пи округляется до 3,14.
- D = 2г. Как и в случае круга , диаметр шара в два раза больше его радиуса.
- C = πD = 2πr. Как и в случае круга , длина окружности шара равна произведению π на диаметр шара. Так как диаметр вдвое больше радиуса, то длина окружности шара равна удвоенному произведению π на радиус шара.
- V = (4/3)πr 3 . Объем шара равен произведению 4/3 на π и на радиус в кубе. [7]
- А = 4πr 2 . Площадь поверхности шара равна учетверенному произведению π на радиус в квадрате. Так как площадь круга равна πr 2 , то площадь поверхности шара в четыре раза больше площади круга, который образует секущая плоскость, проходящая через центр шара.
Видео:11 класс, 22 урок, Касательная плоскость к сфереСкачать
r = С / 2π
π — величина постоянная, равна отношению длины окружности к диаметру. Число Пи, равное 3,141592653… обычно округляется до 3,14.
— по площади шара.
Площадь шара равна произведению четырех пи на квадрат радиуса:
Видео:ШАР и СФЕРА егэ по геометрии 12 задание 11 классСкачать
Нахождение радиуса по расстоянию между двумя точками
- Рассмотрим пример. Дан шар с центром с координатами (4,-1,12). Воспользуйтесь этими координатами, чтобы найти радиус шара.
- В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0). Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.
- В рассматриваемом примере вместо (x1,y1,z1) подставьте (4,-1,12), а вместо (x2,y2,z2) подставьте (3,3,0):
- d = √((x2 – x1) 2 + (y2 – y1) 2 + (z2 – z1) 2 )
- d = √((3 – 4) 2 + (3 – -1) 2 + (0 – 12) 2 )
- d = √((-1) 2 + (4) 2 + (-12) 2 )
- d = √(1 + 16 + 144)
- d = √(161)
- d = 12,69. Это искомый радиус шара.
- Возведите обе стороны этого уравнения в квадрат, и получите r 2 = (x2 – x1) 2 + (y2 – y1) 2 + (z2 – z1) 2 . Отметьте, что это уравнение соответствует уравнению сферы r 2 = x 2 + y 2 + z 2 с центром с координатами (0,0,0).
Видео:11 класс, 23 урок, Площадь сферыСкачать
C = πD = 2πr
Отсюда, радиус равен частному от деления длины окружности © на 2 пи:
Видео:№577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0)Скачать
Через площадь поверхности
Радиус шара рассчитывается таким образом:
S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π .
S = 4 π R 2
Одиннадцать свойств
В своей книге «Геометрия и воображение» Дэвид Гилберт и Стефан Кон-Фоссен описывают свойства сферы и обсуждают, однозначны ли такие характеристики. Несколько пунктов справедливы и для плоскости, которую можно представить как шар с бесконечным радиусом:
- Точки на сфере находятся на одинаковом расстоянии от одной фиксированной, называемой центром. Можно сделать единственный вывод: это обычное определение и оно однозначно. А также отношение расстояний между двумя фиксированными точками является постоянным. И здесь прослеживается аналогия с окружностями Аполлония, то есть с фигурами в плоскости.
- Контуры и плоские участки сферы являются кругами. Это однозначное свойство, которое определяет шар.
- Сфера имеет постоянную ширину и обхват. Ширина поверхности — это расстояние между парами параллельных касательных плоскостей. Множество других замкнутых выпуклых поверхностей имеют постоянную ширину, например, тело Мейснера. Обхват поверхности — это окружность границы её ортогональной проекции на плоскость. Каждое из этих свойств подразумевает другое.
- Все точки сферы омбилические. В любой точке поверхности вектор нормали расположен под прямым углом к ней, поскольку шар — это линии, выходящие из его центра. Пересечение плоскости, которая содержит нормаль с поверхностью, сформирует кривую — нормальное сечение. Любая замкнутая поверхность будет иметь как минимум четыре точки, называемых омбилическими. Для сферы кривизны всех нормальных сечений одинаковы, поэтому омбилической будет каждая точка.
- У шара нет центра поверхности. Например, два центра, соответствующие минимальной и максимальной секционной кривизне, называются фокальными точками, а совокупность всех таких точек образует одноимённую поверхность. И только у шара она преобразуется в единую точку.
- Все геодезические сферы являются замкнутыми кривыми. Для этой фигуры они большие круги. Многие другие поверхности разделяют это свойство.
- Имеет наименьшую площадь при наибольшем объёме. Это определяет шар однозначно. Например, мыльный пузырь: его окружает фиксированный объём, поверхностное натяжение минимизирует площадь его поверхности для такого объёма. Конечно, пузырь не будет идеальным шаром, поскольку внешние силы, такие как гравитация, будут искажать его форму.
- Сфера — единственная вложенная поверхность, у которой нет границы или сингулярностей с постоянной положительной средней кривизной.
- Сфера имеет наименьшую общую среднюю кривизну среди всех выпуклых тел с заданной площадью поверхности.
- Шар имеет постоянную гауссову кривизну. Это внутреннее свойство, которое определяется путём измерения длины и углов и не зависит от того, как поверхность встроена в пространство.
Сфера превращается в себя трёхпараметрическим семейством жёстких движений. Любое вращение вокруг линии, проходящей через начало координат, может быть выражено как комбинация вращений вокруг трёхкоординатной оси.