Как найти основание системы счисления в уравнении

Как найти основание системы счисления в уравнении

В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание.

Решение . Составим уравнение: Как найти основание системы счисления в уравнениигде n — основание этой системы счисления. Исходя из уравнения, Как найти основание системы счисления в уравнении

Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).

Решение . Преобразуем уравнение:

Как найти основание системы счисления в уравнении

Как найти основание системы счисления в уравнении

Основание системы счисления равно 610 = 203.

Решение . Преобразуем уравнение:

Как найти основание системы счисления в уравнении

Корни квадратного уравнения: 8 и −10. Следовательно, основание системы счисления равно 8.

Решение . Переведём все числа в десятичную систему счисления:

Как найти основание системы счисления в уравнении

Как найти основание системы счисления в уравнении

Составим новое уравнение и решим уже его:

Как найти основание системы счисления в уравнении

Как найти основание системы счисления в уравнении

Как найти основание системы счисления в уравнении

Как найти основание системы счисления в уравнении

Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y?

Ответ записать в виде целого числа.

Решение . Поскольку в левой и в правой частях есть цифра 5, оба основания больше 5, то есть перебор имеет смысл начинать с Как найти основание системы счисления в уравнении

Для каждого x вычисляем значение Как найти основание системы счисления в уравнениии решаем уравнение Как найти основание системы счисления в уравнении, причем нас интересуют только натуральные Как найти основание системы счисления в уравнении

Для Как найти основание системы счисления в уравнениии Как найти основание системы счисления в уравнениинужных решений нет, а для Как найти основание системы счисления в уравненииполучаем Как найти основание системы счисления в уравнениитак что Как найти основание системы счисления в уравнении

Ответ: Как найти основание системы счисления в уравнении

В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.

Решение . Составим уравнение: Как найти основание системы счисления в уравнениигде n — основание этой системы счисления. Исходя из уравнения, Как найти основание системы счисления в уравнении

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 31 оканчивается на 4.

Решение . 1. Итак, нужно найти все целые числа Как найти основание системы счисления в уравнении(цифра 4 присутствует в системах счисления только с таким основанием), такие что остаток от деления 31 на N равен 4, или (что то же самое) Как найти основание системы счисления в уравнении, где k — целое неотрицательное число (0, 1, 2, …);

2. Из формулы Как найти основание системы счисления в уравненииполучаем Как найти основание системы счисления в уравнении, так что задача сводится к тому, чтобы найти все делители числа 27, которые больше 4;

3. В этой задаче есть только два таких делителя: Как найти основание системы счисления в уравнениии Как найти основание системы счисления в уравнении.

Некоторые читатели могут подумать, что основанием системы счисления может быть также число 17, поскольку при записи числа 31 в этой системе количество единиц равно 14, то есть оканчивается на 4. Но число 14 в системе счисления с основанием 17 будет записано в виде буквы Е, следовательно, число 31 будет иметь вид 1Е.

Видео:СИСТЕМЫ СЧИСЛЕНИЯ для новичковСкачать

СИСТЕМЫ СЧИСЛЕНИЯ для новичков

Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.

Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.

Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:

Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.

Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.

Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).

Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.

Аналогичное утверждение справедливо для любой системы счисления:

Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.

1. Поиск основания системы счисления

Пример 1.

В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда .Т.е. x = 9.

Пример 2.

В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда

Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.

Ответ: 3

Пример 3

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.

Решение:

Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,

Ответ: 6, 8, 12, 24

Пример 4

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.

Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).

Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.

Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.

2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:

68:4 = 17; 17:4 = 4 (ост 1) – подходит

68:17 = 4; 4:17 = 0 (ост 4) – не подходит

68:34 = 2; 2:17 = 0 (ост 2) – не подходит

68:68 = 1; 1:68 = 0 (ост 1) – подходит

2. Поиск чисел по условиям

Пример 5

Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?

Решение:

Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.

. Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:

3. Решение уравнений

Пример 6

Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).

Переведем все числа в десятичную систему счисления:

Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .

Ответ: 20

4. Подсчет количества единиц (нулей) в двоичной записи значения выражения

Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:

При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.

При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.

Пример 7

Сколько единиц содержится в двоичной записи значения выражения: ?

Представим все числа выражения, как степени двойки:

В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:

Как найти основание системы счисления в уравнении

Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.

Как найти основание системы счисления в уравнении

Теперь прибавляем к получившемуся числу 1:

Как найти основание системы счисления в уравнении

Видим, что у результата 2013+1+1=2015 единиц.

Видео:Найти основание системы счисления. Развернутая форма записи числаСкачать

Найти основание системы счисления. Развернутая форма записи числа

Как определить основание числа в информатике

Система счисления – это способ записи чисел. Обычно, числа записываются с помощью специальных знаков – цифр (хотя и не всегда). Если вы никогда не изучали данный вопрос, то, по крайней мере, вам должны быть известны две системы счисления – это арабская и римская. В первой используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и это позиционная система счисления. А во второй – I, V, X, L, C, D, M и это непозиционная система счисления.

Подробная инструкция, как быстро научиться считать в двоичной и шестнадцатеричной системах приведена на сайте https://itvdn.com/ru/blog/article/binary-hexadecimal-system.

В позиционных системах счисления количество, обозначаемое цифрой в числе, зависит от ее позиции, а в непозиционных – нет. Например:

11 – здесь первая единица обозначает десять, а вторая – 1.
II – здесь обе единицы обозначают единицу.

345, 259, 521 – здесь цифра 5 в первом случае обозначает 5, во втором – 50, а в третьем – 500.

XXV, XVI, VII – здесь, где бы ни стояла цифра V, она везде обозначает пять единиц. Другими словами, величина, обозначаемая знаком V, не зависит от его позиции.

Сложение, умножение и другие математические операции в позиционных системах счисления выполнить легче, чем в непозиционных, т.к. математические операции осуществляются по несложным алгоритмам (например, умножение в столбик, сравнение двух чисел).

В мире наиболее распространены позиционные системы счисления. Помимо знакомой всем с детства десятичной (где используется десять цифр от 0 до 9), в технике широкое распространение нашли такие системы счисление как двоичная (используются цифры 0 и 1), восьмеричная и шестнадцатеричная.

Следует отметить, важную роль нуля. «Открытие» этой цифры в истории человечества сыграло большую роль в формировании позиционных систем счисления.

Основание системы счисления – это количество знаков, которое используется для записи цифр.

Разряд – это позиция цифры в числе. Разрядность числа – количество цифр, из которых состоит число (например, 264 – трехразрядное число, 00010101 – восьмиразрядное число). Разряды нумеруются справа на лево (например, в числе 598 восьмерка занимает первый разряд, а пятерка – третий).

Итак, в позиционной системе счисления числа записываются таким образом, что каждый следующий (движение справа на лево) разряд больше другого на степень основания системы счисления. (придумать схему)

Одно и тоже число (значение) можно представить в различных системах счисления. Представление числа при этом различно, а значение остается неизменным.

Двоичная система счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

Можно пойти еще дальше и разложить так:

1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 – это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

100010012 = 13710
Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.
Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Восьмеричная система счисления

Итак, современное «железо понимает» лишь двоичную систему счисления. Однако человеку трудно воспринимать длинные записи нулей и единиц с одной стороны, а с другой – переводит числа из двоичной в десятичную систему и обратно, достаточно долго и трудоемко. В результате, часто программисты используют другие системы счисления: восьмеричную и шестнадцатеричную. И 8 и 16 являются степенями двойки, и преобразовывать двоичное число в них (так же как и выполнять обратную операцию) очень легко.

В восьмеричной системе счисления используется восемь знаков-цифр (от 0 до 7). Каждой цифре соответствуют набор из трех цифр в двоичной системе счисления:

000 – 0
001 – 1
010 – 2
011 – 3
100 – 4
101 – 5
110 – 6
111 – 7

Для преобразования двоичного числа в восьмеричное достаточно разбить его на тройки и заменить их соответствующими им цифрами из восьмеричной системы счисления. Разбивать на тройки нужно начинать с конца, а недостающие цифры в начале заменить нулями. Например:

1011101 = 1 011 101 = 001 011 101 = 1 3 5 = 135

Т.е число 1011101 в двоичной системе счисления равно числу 135 в восьмеричной системе счисления. Или 10111012 = 1358.

Обратный перевод. Допустим, требуется перевести число 1008 (не заблуждайтесь! 100 в восьмеричной системе – это не 100 в десятичной) в двоичную систему счисления.

1008 = 1 0 0 = 001 000 000 = 001000000 = 10000002

Перевод восьмеричного числа в десятичное можно осуществить по уже знакомой схеме:

6728 = 6 * 8 2 + 7 * 8 1 + 2 * 8 0 = 6 * 64 + 56 + 2 = 384 + 56 + 2 = 44210
1008 = 1 * 8 2 + 0 * 8 1 + 0 * 8 0 = 6410

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления, так же как и восьмеричная, широко используется в компьютерной науке из-за легкости перевода в нее двоичных чисел. При шестнадцатеричной записи числа получаются более компактными.

В шестнадцатеричной системе счисления используются цифры от 0 до 9 и шесть первых латинских букв – A (10), B (11), C (12), D (13), E (14), F (15).

При переводе двоичного числа в шестнадцатеричное, первое разбивается на группы по четыре разряда, начиная с конца. В случае, если количество разрядов не делится нацело, то первая четверка дописывается нулями впереди. Каждой четверке соответствует цифра шестнадцатеричной системе счисления:

Как найти основание системы счисления в уравнении

Например:
10001100101 = 0100 1100 0101 = 4 C 5 = 4C5

Если потребуется, то число 4C5 можно перевести в десятичную систему счисления следующим образом (C следует заменить на соответствующее данному символу число в десятичной системе счисления – это 12):

4C5 = 4 * 162 + 12 * 161 + 5 * 160 = 4 * 256 + 192 + 5 = 1221

Максимальное двухразрядное число, которое можно получить с помощью шестнадцатеричной записи – это FF.

FF = 15 * 161 + 15 * 160 = 240 + 15 = 255

255 – это максимальное значение одного байта, равного 8 битам: 1111 1111 = FF. Поэтому с помощью шестнадцатеричной системы счисления очень удобно кратко (с помощью двух цифр-знаков) записывать значения байтов. Внимание! Состояний у 8-ми битного байта может быть 256, однако максимальное значение – 255. Не забывайте про 0 – это как раз 256-е состояние

118924 в 10 системе счисления = 350214 в х системе счисления, как найти х? если можно то попродобнее

Как найти основание системы счисления в уравнении

Видео:Информатика 8 класс. Системы счисления. Решение уравненийСкачать

Информатика 8 класс. Системы счисления. Решение уравнений

5 ответов 5

Это ж всё брутфорс, это ж несерьезно 🙂

На самом деле, конечно, перебор здесь вполне подходит, и можно дать ему границы сразу — по количеству цифр, по максимальной цифре. Но есть же и аналитический метод.

Это означает, что

3x 5 + 5x 4 + 2x 2 + x – 118920 = 0

Классический многочлен пятой степени. И теперь нужно просто решить полиномиальное уравнение. По основной теореме алгебры у него будет пять комплексных корней, нас, правда, интересует только действительный, хорошо бы положительный, и хорошо бы целый 🙂

Из теоремы Абеля-Руффини известно, что аналитически мы такое уравнение не решим в общем случае, но я бы даже и пробовать не стал: на то придуманы численные методы, которых всяких есть многатыщ — выбрать можно по вкусу, начиная хоть с метода товарища Ньютона. Решаем, и получаем:

x = 8

Хорошо и красиво. Ну можете еще добить преподавателя комплексными корнями, сказав, что это же число записывается точно так же в системе счисления с основанием (-7.07949 – 4.865i) 🙂

Как найти основание системы счисления в уравнении

1) если нужно проверить может ли быть такое число a в данной системе счисления с основанием b, проверьте что все цифры a меньше основания b

т.е. 2358 не может являться числом в 4-ной СС

2)если вы перевели число a из десятичной СС в p-ичную, то для того, чтобы проверить, верно ли вы это сделали, просто переведите ее обратно в десятичную, и проверьте, получится ли то же число а.

Для того чтобы перевести число из p-ичной СС в десятичную, умножьте первую справа цифру на 1, вторую справа на p, третью на p², и т.д. умножая на степени p, а потом найдите сумму всего этого

🔥 Видео

Определение основания систем счисления | ИнформатикаСкачать

Определение основания систем счисления | Информатика

Задание 10_ОГЭ информатика 2020Скачать

Задание 10_ОГЭ информатика 2020

Перевод числа в двоичную систему за два шага!!!Скачать

Перевод числа в двоичную систему за два шага!!!

Двоичная система счисления. Урок 1Скачать

Двоичная система счисления. Урок 1

Урок 32. Перевод чисел между системами счисленияСкачать

Урок 32. Перевод чисел между системами счисления

Информатика ЕГЭ. № 14. Системы счисления. Определение основания. Самая сложная задачи на СС в ЕГЭСкачать

Информатика ЕГЭ. № 14. Системы счисления. Определение основания. Самая сложная задачи на СС в ЕГЭ

Разбор 10 задания | ОГЭ по информатике 2023Скачать

Разбор 10 задания | ОГЭ по информатике 2023

Информатика 8 класс. Правило перевода числа из любой системы счисления в десятичную.Скачать

Информатика 8 класс.  Правило перевода числа из любой системы счисления в десятичную.

Арифметические действия в двоичной системе счисленияСкачать

Арифметические действия в двоичной системе счисления

B7. Позиционные системы счисления. ЕГЭ информатикаСкачать

B7. Позиционные системы счисления. ЕГЭ информатика

Дробные числа в двоичной системе счисления. Урок 2Скачать

Дробные числа в двоичной системе счисления. Урок 2

Разбор 10 задания | ОГЭ по информатике 2021Скачать

Разбор 10 задания | ОГЭ по информатике 2021

Число 67(10) в системе счисления по основанию n оканчивается на 1 и содержит 4 цифры. Найти n. ЕГЭСкачать

Число 67(10) в системе счисления по основанию n оканчивается на 1 и содержит 4 цифры. Найти n. ЕГЭ

Угадываем основание систем счисления!Скачать

Угадываем основание систем счисления!

СИСТЕМЫ СЧИСЛЕНИЯ С НУЛЯ | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

СИСТЕМЫ СЧИСЛЕНИЯ С НУЛЯ | ОСНОВЫ ПРОГРАММИРОВАНИЯ

Из двоичной в десятичнуюСкачать

Из двоичной в десятичную

Сложение в разных системах счисления (2, 8, 16). Урок 5Скачать

Сложение в разных системах счисления (2, 8, 16). Урок 5
Поделиться или сохранить к себе: