Как найти наибольший отрицательный корень тригонометрического уравнения

Найдите наибольший отрицательный корень уравнения

Найдите наибольший отрицательный корень уравнения:

Как найти наибольший отрицательный корень тригонометрического уравненияРешением уравнения cosx=a являются два корня:

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.

Как найти наибольший отрицательный корень тригонометрического уравнения

Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.

Общая рекомендация для всех подобных задач: для начала берите диапазон n от –2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: –3 и 3, –4 и 4 и так далее. Вычисляем:

При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5

При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5

При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5

При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5

При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5

Получили, что наибольший отрицательный корень равен –1,5

Найдите наименьший положительный корень уравнения:

Как найти наибольший отрицательный корень тригонометрического уравненияРешением уравнения sin x = a являются два корня:

Как найти наибольший отрицательный корень тригонометрического уравнения

Либо (он объединяет оба указанные выше):

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от –90 о до 90 о синус которого равен a.

Как найти наибольший отрицательный корень тригонометрического уравнения

Значит
Как найти наибольший отрицательный корень тригонометрического уравненияВыразим x (умножим на 4 и разделим на Пи):

Как найти наибольший отрицательный корень тригонометрического уравненияНайдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n получим отрицательные корни. Поэтому будем подставлять n=0,1,2 …

При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4

При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6

При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12

Проверим при n=–1 х=(–1) –1 + 4∙(–1) + 3 = –2

Значит наименьший положительный корень равен 4.

Найдите наименьший положительный корень уравнения:

Как найти наибольший отрицательный корень тригонометрического уравнения

Решением уравнения tg x = a является корень:

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.

Как найти наибольший отрицательный корень тригонометрического уравненияЗначит

Как найти наибольший отрицательный корень тригонометрического уравненияВыразим x (умножим на 6 и разделим на Пи):

Как найти наибольший отрицательный корень тригонометрического уравненияНайдём наименьший положительный корень. Подставим значения n=0,1,2,3 … Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:

Как найти наибольший отрицательный корень тригонометрического уравнения

Таким образом, наименьший положительный корень равен 0,25.

Видео:Решите уравнение: tg пx/4 = -1 В ответе напишите наибольший отрицательный корень.Скачать

Решите уравнение: tg пx/4 = -1 В ответе напишите наибольший отрицательный корень.

Тригонометрические уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Тригонометрические уравнения. В составе экзамена по математике в первой части имеется задание связанное с решением уравнения — это простые уравнения, которые решаются за минуты, многие типы можно решить устно. Включают в себя: линейные, квадратные, рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения.

В этой статье мы рассмотрим тригонометрические уравнения. Их решение отличается и по объёму вычисления и по сложности от остальных задач этой части. Не пугайтесь, под словом «сложность», имеется виду их относительную сложность по сравнению с другими заданиями.

Кроме нахождения самих корней уравнения, необходимо определить наибольший отрицательный, либо наименьший положительный корень. Вероятность того, что вам на экзамене попадёт тригонометрическое уравнение, конечно же, мала.

Их в данной части ЕГЭ менее 7%. Но это не означает, что их нужно оставить без внимания. В части С тоже необходимо решить тригонометрическое уравнение, поэтому хорошо разобраться с методикой решения и понимать теорию просто необходимо.

Понимание раздела «Тригонометрия» в математике во многом определяет ваш успех при решении многих задач. Напоминаю, что ответом является целое число или конечная десятичная дробь. После того, как получите корни уравнения, ОБЯЗАТЕЛЬНО сделайте проверку. Много времени это не займёт, а вас избавит от ошибки.

В будущем мы также рассмотрим и другие уравнения, не пропустите! Вспомним формулы корней тригонометрических уравнений, их необходимо знать:

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Знание этих значений необходимо, это «азбука», без которой невозможно будет справиться с множеством заданий. Отлично, если память хорошая, вы легко выучили и запомнили эти значения. Что делать, если этого сделать не получается, в голове путаница, да просто вы именно при сдаче экзамена сбились. Обидно будет потерять бал из-за того, что вы запишите при расчётах неверное значение.

Алгоритм восстановления этих значений прост, он также приведён в теории, полученной вами во втором письме после подписки на рассылку. Если ещё не подписались, сделайте это! В будущем также рассмотрим, как эти значения можно определить по тригонометрической окружности. Не даром её называют «Золотое сердце тригонометрии».

Сразу поясню, во избежание путаницы, что в рассматриваемых ниже уравнениях даны определения арксинуса, арккосинуса, арктангенса с использованием угла х для соответствующих уравнений: cosx=a, sinx=a, tgx=a, где х может быть и выражением. В примерах ниже у нас аргумент задан именно выражением.

Итак, рассмотрим следующие задачи:

Как найти наибольший отрицательный корень тригонометрического уравнения

Найдите корень уравнения:

Как найти наибольший отрицательный корень тригонометрического уравнения

В ответе запишите наибольший отрицательный корень.

Решением уравнения cos x = a являются два корня:

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.

Общая рекомендация для всех подобных задач: для начала берите диапазон n от – 2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: – 3 и 3, – 4 и 4 и так далее.

При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5

При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5

При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5

При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5

При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5

Получили, что наибольший отрицательный корень равен –1,5

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

В ответе напишите наименьший положительный корень.

Решением уравнения sin x = a являются два корня:

Как найти наибольший отрицательный корень тригонометрического уравнения

Либо (он объединяет оба указанные выше):

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от – 90 о до 90 о синус которого равен a.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Выразим x (умножим обе части уравнения на 4 и разделим на Пи):

Как найти наибольший отрицательный корень тригонометрического уравнения

Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n мы получим отрицательные корни. Поэтому будем подставлять n = 0,1,2 …

При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4

При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6

При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12

Проверим при n = –1 х = (–1) –1 + 4∙(–1) + 3 = –2

Значит наименьший положительный корень равен 4.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

В ответе напишите наименьший положительный корень.

Решением уравнения tg x = a является корень:

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Выразим x (умножим обе части уравнения на 6 и разделим на Пи):

Как найти наибольший отрицательный корень тригонометрического уравнения

Найдём наименьший положительный корень. Подставим значения n = 1,2,3. Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:

Как найти наибольший отрицательный корень тригонометрического уравнения

Таким образом, наименьший положительный корень равен 0,25.

Как найти наибольший отрицательный корень тригонометрического уравнения

Определение котангенса: Арккотангенсом числа a (a – любое число) называется угол x принадлежащий интервалу (0;П), котангенс которого равен a.

Здесь хочу добавить, что в уравнениях в правой части может стоять отрицательное число, то есть тригонометрическая функция от аргумента может иметь отрицательное значение. Если в ходе решения вы не сможете определить угол, например, для

Как найти наибольший отрицательный корень тригонометрического уравнения

то данные формулы вам помогут:

Как найти наибольший отрицательный корень тригонометрического уравнения

Спасибо за внимание, учитесь с удовольствием!

Видео:Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.

Простейшие тригонометрические уравнения. Часть 1

Простейшими называются тригонометрические уравнения следующих четырёх видов:

Любое тригонометрическое уравнение в конечном счёте сводится к решению одного или нескольких простейших. К сожалению, на этом заключительном стандартном шаге школьники часто допускают ошибки, что ведет к потере баллов на ЕГЭ. Именно поэтому так важна данная тема.

Существуют два подхода к решению простейших тригонометрических уравнений.
Первый подход — бессмысленный и тяжёлый. Следуя ему, надо выучить по шпаргалке общие формулы, а также все частные случаи. Польза от этого столь же невелика, как от зубрежки шестнадцати строк заклинаний на непонятном языке. Мы отказываемся от такого подхода раз и навсегда.

Второй подход — логический и наглядный. Для решения простейших тригонометрических уравнений мы пользуемся тригонометрическим кругом и определениями тригонометрических функций.

Видео:sinπx/3=0,5 В ответе напишите наименьший положительный корень/ наибольший отрицательный кореньСкачать

sinπx/3=0,5 В ответе напишите наименьший положительный корень/ наибольший отрицательный корень

Уравнения и

Напомним, что — абсцисса точки на единичной окружности, соответствующей углу , а — её ордината.

Как найти наибольший отрицательный корень тригонометрического уравнения

Из определения синуса и косинуса следует, что уравнения и имеют решения только при условии .

Абитуриент, будь внимателен! Уравнения или решений не имеют!

Начнём с самых простых уравнений.

. .
Мы видим, что на единичной окружности имеется лишь одна точка с абсциссой 1:

Как найти наибольший отрицательный корень тригонометрического уравнения
Эта точка соответствует бесконечному множеству углов: . Все они получаются из нулевого угла прибавлением целого числа полных углов (т. е. нескольких полных оборотов как в одну, так и в другую сторону).

Следовательно, все эти углы могут быть записаны одной формулой:

Это и есть множество решений данного уравнения. Напоминаем, что — это множество целых чисел.

Снова видим, что на единичной окружности есть лишь одна точка с абсциссой :

Как найти наибольший отрицательный корень тригонометрического уравнения

Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны, т. е. на целое число полных углов. Следовательно, все решения данного уравнения записываются формулой:

. .
Отмечаем на тригонометрическом круге единственную точку с ординатой :

Как найти наибольший отрицательный корень тригонометрического уравнения

И записываем ответ:

Обсуждать тут уже нечего, не так ли? 🙂

Как найти наибольший отрицательный корень тригонометрического уравнения

Можете, кстати, записать ответ и в другом виде:

Это — дело исключительно вашего вкуса.
Заодно сделаем первое полезное наблюдение. Чтобы описать множество углов, отвечающих одной-единственной точке тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .

На тригонометрическом круге имеются две точки с ординатой 0:

Как найти наибольший отрицательный корень тригонометрического уравнения

Эти точки соответствуют углам Все эти углы получаются из нулевого угла прибавлением целого числа углов (т. е. с помощью нескольких полуоборотов в обе стороны). Таким образом,

Точки, лежащие на концах диаметра тригонометрического круга, мы будем называть диаметральной парой.

Точки с абсциссой 0 также образуют диаметральную пару, на сей раз вертикальную:

Как найти наибольший отрицательный корень тригонометрического уравнения

Все углы, отвечающие этим точкам, получаются из — прибавлением целого числа углов (полуоборотов):

Теперь мы можем сделать и второе полезное наблюдение.

Чтобы описать множество углов, отвечающих диаметральной паре точек тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .

Переходим к следующему этапу. Теперь в правой части будет стоять табличное значение синуса или косинуса (отличное от 0 или ). Начинаем с косинуса.

Имеем вертикальную пару точек с абсциссой :

Как найти наибольший отрицательный корень тригонометрического уравнения

Все углы, соответствующие верхней точке, описываются формулой (вспомните первое полезное наблюдение!):

Аналогично, все углы, соответствующие нижней точке, описываются формулой:

Обе серии решений можно описать одной формулой:

Остальные уравнения с косинусом решаются совершенно аналогично. Мы приводим лишь рисунок и ответ.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Теперь рассмотрим уравнения с синусом. Тут ситуация немного сложнее.

Имеем горизонтальную пару точек с ординатой :

Как найти наибольший отрицательный корень тригонометрического уравнения

Углы, отвечающие правой точке:

Углы, отвечающие левой точке:

Описывать эти две серии одной формулой никто не заставляет. Можно записать ответ в таком виде:

Тем не менее, объединяющая формула существует, и её надо знать. Выглядит она так:

На первый взгляд совершенно не ясно, каким образом она дает обе серии решений. Но давайте посмотрим, что получается при чётных . Если , то

Мы получили первую серию решений . А если — нечетно, , то

Это вторая серия .

Обратим внимание, что в качестве множителя при обычно ставится правая точка, в данном случае .

Остальные уравнения с синусом решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

На этом с синусом и косинусом пока всё. Переходим к тангенсу.

Видео:Решите уравнение sin п(4x-3)/4 = 1. В ответе напишите наибольший отрицательный корень.Скачать

Решите уравнение sin п(4x-3)/4 = 1. В ответе напишите наибольший отрицательный корень.

Линия тангенсов.

Начнём с геометрической интерпретации тангенса — так называемой линии тангенсов. Это касательная к единичной окружности, параллельная оси ординат (см. рисунок).

Как найти наибольший отрицательный корень тригонометрического уравнения

Из подобия треугольников и имеем:

Мы рассмотрели случай, когда находится в первой четверти. Аналогично рассматриваются случаи, когда находится в остальных четвертях. В результате мы приходим к следующей геометрической интерпретации тангенса.

Тангенс угла равен ординате точки , которая является точкой пересечения линии тангенсов и прямой , соединяющей точку с началом координат.

Вот рисунок в случае, когда находится во второй четверти. Тангенс угла отрицателен.

Как найти наибольший отрицательный корень тригонометрического уравнения

Видео:tg (π(8x+9))/3=-√3 в ответе напишите наибольший отрицательный кореньСкачать

tg (π(8x+9))/3=-√3 в ответе напишите наибольший отрицательный корень

Уравнение

Заметим, что тангенс может принимать любые действительные значения. Иными словами, уравнение имеет решения при любом .

.
Имеем диаметральную горизонтальную пару точек:

Как найти наибольший отрицательный корень тригонометрического уравнения
Эта пара, как мы уже знаем, описывается формулой:

Имеем диаметральную пару:

Как найти наибольший отрицательный корень тригонометрического уравнения

Вспоминаем второе полезное наблюдение и пишем ответ:

Остальные уравнения с тангенсом решаются аналогично. Мы приводим лишь рисунки и ответы.

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

Как найти наибольший отрицательный корень тригонометрического уравнения

На этом заканчиваем пока и с тангенсом.

Уравнение нет смысла рассматривать особо. Дело в том, что:
уравнение равносильно уравнению ;

при уравнение равносильно уравнению .

Впрочем, существует также и линия котангенсов, но. . . Об этом мы вам расскажем на занятиях 🙂

Итак, мы разобрали простейшие тригонометрические уравнения, содержащие в правой части табличные значения тригонометрических функций. Именно такие задачи встречаются в части В вариантов ЕГЭ.

А что делать, например, с уравнением ? Для этого надо сначала познакомиться с обратными тригонометрическими функциями. О них мы расскажем вам в следующей статье.

📸 Видео

Решите уравнение tg п(x+2)/3 = - корень из 3. В ответе напишите наибольший отрицательный корень.Скачать

Решите уравнение  tg п(x+2)/3 = - корень из 3. В ответе напишите наибольший отрицательный корень.

Решите уравнение tg п(x-3)/6 = 1/корень из 3. В ответе напишите наибольший отрицательный корень.Скачать

Решите уравнение tg п(x-3)/6 = 1/корень из 3. В ответе напишите наибольший отрицательный корень.

tg pi(2x+5)/6=корень из 3. В ответе запишите наибольший отрицательный корень (проф. ЕГЭ, задача 6)Скачать

tg pi(2x+5)/6=корень из 3. В ответе запишите наибольший отрицательный корень (проф. ЕГЭ, задача 6)

Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)Скачать

Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Отбор корней по окружностиСкачать

Отбор корней по окружности

Найдите наибольший отрицательный корень 251Скачать

Найдите наибольший отрицательный корень 251

Как найти наибольший корень уравнения #shorts | ЕГЭ 2022 по математике | Эйджей из ВебиумаСкачать

Как найти наибольший корень уравнения #shorts | ЕГЭ 2022 по математике | Эйджей из Вебиума

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯСкачать

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

Решите уравнение sin(πx/3) = 1/2 В ответе напишите наименьший положительный корень.Скачать

Решите уравнение sin(πx/3) = 1/2  В ответе напишите наименьший положительный корень.

Находим решение тригонометрического уравнения на интервале Алгебра 10 классСкачать

Находим решение тригонометрического уравнения на интервале Алгебра 10 класс

Как решать уравнения с косинусом ? / ЕГЭ ПРОФИЛЬ # 26669Скачать

Как решать уравнения с косинусом ? / ЕГЭ ПРОФИЛЬ # 26669
Поделиться или сохранить к себе: