Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.
Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.
«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:
тело отсчета
система координат
часы
В совокупности эти три параметра образуют систему отсчета.
В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉
Прямолинейное равномерное движение
Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.
Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.
Мы можем охарактеризовать это движение следующими величинами.
Скалярные величины (определяются только значением)
Время — в международной системе единиц СИ измеряется в секундах [с].
Путь — длина траектории (линии, по которой движется тело). В случае прямолинейного равномерного движения — длина отрезка [м].
Векторные величины (определяются значением и направлением)
Скорость — характеризует быстроту перемещения и направление движения материальной точки [м/с].
Перемещение — вектор, проведенный из начальной точки пути в конечную [м].
Видео:УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать
Проецирование векторов
Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.
Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.
Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.
Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.
Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.
Скорость
— скорость [м/с] — перемещение [м] — время [с]
Средняя путевая скорость
V ср.путевая = S/t
V ср.путевая — средняя путевая скорость [м/с] S — путь [м] t — время [с]
Задача
Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.
Решение:
Возьмем формулу средней путевой скорости V ср.путевая = S/t
Подставим значения: V ср.путевая = 210/2,5 = 84 км/ч
Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч
Уроки физики в онлайн-школе Skysmart не менее увлекательны, чем наши статьи!
Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать
Уравнение движения
Одной из основных задач механики является определение положения тела относительно других тел в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).
Уравнение движения
x(t) — искомая координата в момент времени t [м] x0 — начальная координата [м] vx — скорость тела в данный момент времени [м/с] t — момент времени [с]
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v
Уравнение движения при движении против оси
x(t) — искомая координата в момент времени t [м] x0 — начальная координата [м] vx — скорость тела в данный момент времени [м/с] t — момент времени [с]
Видео:Графики зависимости кинематических величин от времени при равномерном и равноускоренном движенииСкачать
Прямолинейное равноускоренное движение
Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».
Итак, равноускоренное прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.
Уравнение движения и формула конечной скорости
Основная задача механики не поменялась по ходу текста — определение положения тела относительно других тел в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.
Уравнение движения для равноускоренного движения
x(t) — искомая координата в момент времени t [м] x0 — начальная координата [м] v0x — начальная скорость тела в [м/с] t — время [с] ax — ускорение [м/с 2 ]
Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:
Формула конечной скорости
— конечная скорость тела [м/с] — начальная скорость тела [м/с] — время [с] — ускорение [м/с 2 ]
Задача
Найдите местоположение автобуса, который разогнался до скорости 60 км/ч за 3 минуты, через 0,5 часа после начала движения из начала координат.
Решение:
Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:
Так как автобус двигался с места, . Значит
Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.
3 минуты = 3/60 часа = 1/20 часа = 0,05 часа
Подставим значения: a = v/t = 60/0,05 = 1200 км/ч 2 Теперь возьмем уравнение движения. x(t) = x0 + v0xt + axt 2 /2
Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:
Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.
Подставим циферки: км
Ответ: через полчаса координата автобуса будет равна 150 км.
Видео:Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать
Движение по вертикали
Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с 2 , а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).
Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .
Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.
Помните о том, что свободное падение — это не всегда движение по вертикали из состояния покоя. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.
Видео:Решение графических задач на равномерное движениеСкачать
Как найти скорость с ускорением и временем: разные подходы, проблемы, примеры
Скорость, ускорение и время являются основными величинами для вывода уравнения движения. В общем, производная скорости по времени дает ускорение.
В кинематике скорость можно найти, используя ускорение и время. С скорость и ускорение связаны с величиной и направлением, для определения скорости мы используем как алгебраический метод, так и интегральное исчисление. В этом посте обсуждается, как найти скорость с учетом ускорения и времени, используя оба метода.
Представим, что тело движется с ускорением «а», преодолевая определенное расстояние в момент «t».
Алгебраическим методом:
Из кинематического определения ускорение — скорость изменения скорости движущегося тела.
Здесь мы рассматриваем; изначально тело имеет минимальную скорость; следовательно, начальную скорость можно считать приблизительно нулевой.
Переставляя члены, мы получаем скорость тела как;
Методом интегрального исчисления:
Производная по времени от скорость дает ускорение тела. Это определяется следующим уравнением.
Преобразуя приведенное выше уравнение
Интегрируя приведенное выше уравнение по времени t
Где; C — интегральная постоянная.
Следовательно; v = при + C
Вышеприведенное уравнение дает скорость; таким образом, умножение ускорения на время дает скорость.
Видео:Физика - перемещение, скорость и ускорение. Графики движения.Скачать
Как найти скорость по графику ускорения и времени?
Построен график ускорения в зависимости от времени, что позволяет определить различные физические величины, такие как рывки и удары. скорость. Область, покрытая графиком «ускорение – время», показывает скорость.
Например, машина движется с начальной скоростью 16 м / с. Как со временем, машина начинает разгоняться. В ускорение автомобиля постоянна во времени. Через некоторое время машина внезапно останавливается, что показано на приведенном ниже графике.
Пунктирная линия используется как контрольная линия, когда тело останавливается.
Площадь, занимаемая в график ускорение – время представляет собой прямоугольник. Площадь прямоугольника определяется как
Из приведенного выше графика длина прямоугольника — это ускорение, а ширина — время; следовательно, уравнение
Но площадь графика at — это скорость, тогда
Следовательно, по определению На графике времени разгона площадь — это не что иное, как скорость.
Видео:Скорость и перемещение при прямолинейном равноускоренном движении. 9 класс.Скачать
Как найти начальную скорость с ускорением и временем?
Когда тело начинает перемещаться из одной точки в другую, сначала оно обладает некоторой скоростью. Тело не нуждается в постоянной скорости, пока оно не достигнет своего конечного пункта назначения. Скорость тела изменяется со временем, когда оно движется, и, следовательно, тело приобретает ускорение.
Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.
Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.
Начальную скорость можно рассчитать тремя способами.
Используя алгебраический метод:
Ускорение из-за изменения скорости определяется выражением
Вышеприведенное уравнение дает начальную скорость движущегося тела.
По расчетам:
Исходя из определения ускорения, уравнение имеет вид
Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.
Преобразуя приведенное выше уравнение, мы получаем начальную скорость.
Графическим методом:
Построен график зависимости скорости от времени, наклон которого дает ускорение — затем, найдя наклон, можно вычислить начальную скорость.
Исходя из приведенного выше графика, мы можем сказать это.
В единый интервал временискорость тела изменяется.
OD — время, затрачиваемое телом на путешествие, а BD — конечная скорость тела.
Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.
На приведенном выше графике показано, что
Начальная скорость тела vi = ОА
Конечная скорость тела vf = БД
На графике BD = BC + DC
Следовательно, vf = ВС + ПОС
vf = до нашей эры + ви
На графике наклон = ускорение a
Но AC = t (из графика)
Подставляя значение BC
Видео:Физика. Кинематика. Kак найти начальную скорость по теореме виетаСкачать
Как найти изменение скорости в зависимости от ускорения и времени
В общем, изменение скорости со временем дает ускорение.
Пусть тело движется с ускорением ‘a’ со временем ‘t’, изначально скорость объекта равна vi, а в конечной точке имеет скорость vf. Тогда изменение скорости определяется по уравнению:
Где ∆v — изменение скорости, а ∆t — изменение во времени.
Но изменение скорости определяется разница между начальной и конечной скоростью. Это дается уравнением ниже.
Изменение в скорость можно рассчитать с помощью графика «ускорение – время». Площадь под графиком at показывает изменение скорости.
Давайте ясно поймем это, рассмотрев пример, представленный графиком, приведенным ниже.
Площадь на графике времени ускорения представляет собой треугольник. Следовательно, вычисляя изменение скорости дается путем вычисления площади треугольника. Формула для определения площади треугольника:
Здесь h — высота треугольника, ускорение считается высотой, а b — основание треугольника, которое определяется осью времени. Таким образом, изменение скорости равно
По изменению скорости мы можем узнать начальную и конечную скорость тела.
Видео:Теория движение тела брошенного вертикально вверхСкачать
Решены задачи о том, как найти скорость с ускорением и временем.
Видео:РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 ПерышкинСкачать
Задача 1) Лодка движется с начальной скоростью 11 м / с. Лодка развивает ускорение 3 м / с. 2 каждые 10 секунд. Затем рассчитайте изменение скорости и конечную скорость лодки.
Решение:
Данные приведены для расчета:
Начальная скорость лодки vi = 11 м / с.
Изменение ускорения, достигаемого лодкой a = 3 м / с 2 .
Изменение по времени t = 10 сек.
Чтобы найти окончательную скорость, уравнение
Видео:Урок 37. Движение тела, брошенного под углом к горизонту (начало)Скачать
Задача 2) График ускорение – время приведен ниже. Найдите изменение скорости и вычислите начальную скорость, если конечная скорость равна 54 м / с.
Решение:
Конечная скорость vf = 54 м / с. На графике ускорение-время покрытая область представляет собой трапецию. Таким образом, площадь трапеции определяется выражением
Где a и b — прилегающее основание трапеции, h — высота. Из графика; a = 9 единиц, b = 5 единиц, h = 4 единицы.
Изменение скорости равно площади трапеции.
Чтобы найти начальную скорость
Видео:Движение тела, брошенного под углом к горизонтуСкачать
Задача 3) дается график ускорение – время для определения изменения скорости.
Решение:
Приведенный выше график можно разделить на три части, представленные пунктирной линией, как показано на рисунке ниже.
На приведенном выше графике можно понять следующие термины.
OAD и BCE — треугольник; площадь треугольника задается формулой
ABCD — прямоугольник; площадь прямоугольника определяется выражением
Чтобы найти изменение скорости, необходимо вычислить сумму площадей всех геометрических структур.
Задача 4) Найдите начальную скорость мяча, который ускоряется со скоростью 6 м / с. 2 со временем 8 сек. Конечная скорость мяча составляет 100 м / с.
Решение:
Приведены данные: ускорение мяча a = 6 м / с2.
Конечная скорость vf = 100 м / с.
Для нахождения начальной скорости тела задается уравнение
Видео:Скорость движения тела задана уравнениемСкачать
Задача 5) Рассчитайте изменение скорости движущегося объекта, имеющего начальную скорость 34 м / с. Ускорение объекта 12 м / с. 2 , а изменение по времени — 7 сек.
Решение:
Начальная скорость объекта vi = 34 м / с.
Ускорение объекта a = 12 м / с 2 .
Изменение по времени t = 7 сек.
Конечная скорость объекта определяется выражением;
Изменение скорости определяется выражением;
Видео:Механика. Равноускоренное движение. Уравнения изменения скоростиСкачать
Задача 6) Диск движется с начальной скоростью 25 м / с. Диск меняет свою скорость каждые 10 секунд. Изменение ускорения 5 м / с. 2 . Рассчитайте конечную скорость диска.
Решение:
Начальная скорость диска vi = 25 м / с.
Изменение ускорения ∆a = 5 м / с 2 .
Изменение времени ∆t = 10 сек.
Изменение скорости равно
Конечная скорость диска может быть рассчитана по формуле, приведенной ниже.
Последние сообщения о передовой науке и исследованиях
Я Кирти К. Мурти, я закончила аспирантуру по физике со специализацией в области физики твердого тела. Я всегда считал физику фундаментальным предметом, связанным с нашей повседневной жизнью. Будучи студентом естественных наук, я люблю изучать новые вещи в физике. Как писатель, моя цель — через свои статьи дойти до читателей в упрощенной форме. Свяжитесь со мной — keerthikmurthy24@gmail.com
Видео:Как найти проекцию вектора скорости и ускорения. Выполнялка 112Скачать
report this ad Похожие сообщения
Ускорение против. Замедление: подробный анализ
Примеры положительного ускорения: подробный анализ
Поверхностное ускорение без трения: исчерпывающая информация…
Как найти ускорение свободного падения:…
Как найти ускорение свободного падения…
Пример гравитационного ускорения: подробные сведения
Как рассчитать ускорение с помощью…
Как найти среднюю скорость…
Скорость графика постоянного ускорения против…
Как найти ускорение с…
Как рассчитать силу без…
Как найти нормальную силу…
15 Пример чистой силы:…
Как найти нормальную силу…
Как найти чистую силу:…
Мгновенная скорость и ускорение: сравнительное…
Отрицательно ли замедление: подробные факты
Как определить конечную скорость…
Как найти скорость с помощью…
Как найти скорость с помощью…
Видео:Уравнение движения. Как найти время и место встречи двух тел ???Скачать
Видео:Урок 16 (осн) Средняя скорость. Вычисление пути и времени движенияСкачать
Наша миссия
Наша миссия — служить и делиться своим опытом с большим и разносторонним сообществом студентов или работающих профессионалов для удовлетворения их потребностей в обучении.
Видео:Уравнение координат при равноускоренном движенииСкачать
Движение тела с ускорением свободного падения
теория по физике 🧲 кинематика
Свободное падение — это движение тела только под действием силы тяжести.
В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.
В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!
Ускорение свободного падения
Ускорение свободного падения — векторная физическая величина. Вектор ускорения свободного падения всегда направлен вниз к центру Земли. Обозначается как g .
Единица измерения ускорения свободного падения — 1 м/с 2 .
Модуль ускорения свободного падения — скалярная величина. Обозначается как g. Численно равна 9,8 м/с 2 . При решении задач это значение округляется до целых: g = 10 м/с 2 .
Свободное падение
Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:
v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело
Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.
Подставляем данные в формулу и вычисляем:
v = gt = 10∙3 = 30 (м/с).
Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.
Внимание!Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.
Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.
Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:
Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:
Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.
Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:
Формула определения перемещения тела в n-ную секунду свободного падения:
s(n) — перемещение за секунду n.
Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.
Движение тела, брошенного вертикально вверх
Движение тела, брошенного вертикально вверх, описывается в два этапа
Два этапа движения тела, брошенного вертикально вверх Этап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях ( v ↑↓ g ). Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону ( v ↑↑ g ). Формулы для расчета параметров движения тела, брошенного вертикально вверх Перемещение тела, брошенного вертикально вверх, определяется по формуле:
Если известна скорость в момент времени t, для определения перемещения используется следующая формула:
Если время движения неизвестно, для определения перемещения используется следующая формула:
Формула определения скорости:
Какой знак выбрать — «+» или «–» — вам помогут правила:
Если движение равнозамедленное (тело поднимается вверх), перед ускорением свободного падения в формуле нужно ставить знак «–», так как векторы скорости и ускорения противоположно направлены.
Если движение равноускоренное (тело падает вниз), перед ускорением свободного падения в формуле нужно ставить знак «+», так как векторы скорости и ускорения сонаправлены.
Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).
Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.
Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:
Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).
Уравнение координаты и скорости при свободном падении
Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Уравнение скорости при свободном падении:
Полезные факты
В момент падения тела на землю y = 0.
В момент броска тела от земли y0 = 0.
Когда тело падает без начальной скорости (свободно) v0 = 0.
Когда тело достигает наибольшей высоты v = 0.
Построение чертежа
Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.
План построения чертежа
Чертится ось ОУ. Начало координат должно совпадать с уровнем земли или с самой нижней точки траектории.
Отмечаются начальная и конечная координаты тела (y и y0).
Указываются направления векторов. Нужно указать направление ускорения свободного падения, начальной и конечной скоростей.
Свободное падение на землю с некоторой высоты
Тело подбросили от земли и поймали на некоторой высоте
Уравнение скорости:
Тело подбросили от земли, на одной и той же высоте оно побывало дважды
Интервал времени между моментами прохождения высоты h:
Уравнение координаты для первого прохождения h:
Уравнение координаты для второго прохождения h:
Важно!Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.
Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?
Из условия задачи начальная скорость равна 0, а начальная координата — 50.
Через 3 с после падения тело окажется на высоте 5 м.
Алгоритм решения
Записать исходные данные.
Сделать чертеж, иллюстрирующий ситуацию.
Записать формулу для определения искомой величины в векторном виде.
Записать формулу для определения искомой величины в векторном виде.
Подставить известные данные и вычислить скорость.
Решение
Записываем исходные данные:
Перемещение (высота) свободно падающего тела, определяется по формуле:
В скалярном виде эта формула примет вид:
Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:
Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:
Записать формулу для определения скорости тела в векторном виде.
Записать формулу для определения скорости тела в скалярном виде.
Подставить известные данные и вычислить скорость.
Решение
Записываем исходные данные:
Записываем формулу для определения скорости тела в векторном виде:
Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону: