Видео:АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать
2. Отыскание точек экстремума
Теория:
Теорема 3. Если функция (y=f(x)) имеет экстремум в точке x = x 0 , то в этой точке производная функции либо равна нулю, либо не существует.
Теорема 4 (достаточные условия экстремума). Пусть функция y = f ( x ) непрерывна на промежутке (X) и имеет внутри промежутка стационарную или критическую точку x = x 0 . Тогда:
а ) если у этой точки существует такая окрестность, в которой при x x 0 выполняется неравенство f ′ ( x ) 0 , а при x > x 0 — неравенство f ′ ( x ) > 0 , то x = x 0 — точка минимума функции y = f ( x ) );
б ) если у этой точки существует такая окрестность, в которой при x x 0 выполняется неравенство f ′ ( x ) > 0 , а при x > x 0 — неравенство f ′ ( x ) 0 , то x = x 0 — точка максимума функции y = f ( x ) );
в) если у этой точки существует такая окрестность, что в ней и слева, и справа от точки x 0 знаки производной одинаковы, то в точке x 0 экстремума нет.
Обычно точки из области определения функции, в которых производная равна нулю, называются стационарными , а точки из области определения функции, в которых функция непрерывна, а производная не существует, называются критическими .
Итак, чтобы определить экстремумы (минимумы и максимумы) функции f ( x ) , сначала нужно найти критические точки, в которых f ′ ( x ) = 0 или же производная не существует (и которые принадлежат области определения функции). Тогда легко определить интервалы, в которых у производной неизменный знак. (Критические (стационарные) точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.)
Алгоритм исследования непрерывной функции y = f ( x ) на монотонность и экстремумы:
1. найдём производную f ′ ( x ) .
2. Определим стационарные и критические точки.
3. Нанесём стационарные и критические точки на числовую прямую и определим знаки производной на каждом промежутке.
4. Опираясь на теоремы (1), (2) и (4), определим промежутки монотонности функции и точки экстремума функции.
Достаточное условие экстремума функции одной переменной
Если в точке x * выполняется условие:
Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3]. Решение.
Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]). Вычисляем значения функции на концах отрезка и в критической точке. f(1)=9, f(2)= 5 /2, f(3)=3 8 /81 Ответ: fmin= 5 /2 при x=2; fmax=9 при x=1
Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) . Решение. Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.
Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0. Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0). Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.
Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим. Решение. Обозначим x — первое слагаемое. Тогда (49-x) — второе слагаемое. Произведение будет максимальным: x·(49-x) → max или 49x — x 2
🌟 Видео
Необходимые и достаточные условия экстремума функции. 10 класс.Скачать