Как найти корни уравнения графическим способом

Графический метод. Описание, примеры решения уравнений

Эта статья посвящена одному из направлений функционально-графического метода решения уравнений, а именно, графическому методу. Сначала дано описание графического метода: раскрыта его суть, сказано, на чем базируется метод, приведено его обоснование, обговорены особенности метода, связанные с точностью. Дальше идет практическая часть: записан алгоритм решения уравнений графическим методом и показаны решения характерных примеров.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

В чем состоит метод и на чем он базируется

Графический метод решения уравнений состоит в использовании графиков функций, отвечающих частям уравнения, для нахождения с их помощью решения уравнения. Базируется он на следующем утверждении:

Решение уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) .

Обоснованием этого утверждения займемся в следующем пункте. А сейчас выудим из него полезные сведения.

Основное из них таково: по количеству точек пересечения графиков функций y=f(x) и y=g(x) можно судить о количестве корней уравнения f(x)=g(x) , а по абсциссам точек пересечения можно судить о корнях этого уравнения. Проиллюстрируем сказанное.

Взглянем на чертеж, на котором изображены графики функций Как найти корни уравнения графическим способоми Как найти корни уравнения графическим способом.
Как найти корни уравнения графическим способом

Очевидно, в видимой области графики изображенных функций не имеют точек пересечения. За пределами видимой области графики тоже не имеют точек пересечения. Это мы можем утверждать в силу известного нам поведения графиков степенных функций и линейных функций. Отсутствие точек пересечения позволяет нам сделать вывод, что уравнение Как найти корни уравнения графическим способомне имеет решений.

Другой пример. На следующем рисунке изображены графики функций Как найти корни уравнения графическим способоми Как найти корни уравнения графическим способом.
Как найти корни уравнения графическим способом

Сколько точек пересечения мы видим? Две. Известное поведение графиков показательных функций и линейных функций позволяет утверждать, что за пределами видимой области точек пересечения нет. Значит, графики функций Как найти корни уравнения графическим способоми Как найти корни уравнения графическим способомпересекаются в двух точках, следовательно, уравнение Как найти корни уравнения графическим способомимеет два корня. А каковы значения этих корней? Для ответа на этот вопрос определяем абсциссы точек пересечения графиков. По рисунку находим, что абсциссы точек пересечения есть −2 и 1 . Через проверку подстановкой убеждаемся, что это действительно корни уравнения Как найти корни уравнения графическим способом:
Как найти корни уравнения графическим способом

Здесь стоит заметить, что к проверке подстановкой мы обратились не случайно. Дело в том, что найденные по графикам значения корней можно считать лишь приближенными до проведения проверки. Подробнее об этом мы поговорим в одном из следующих пунктов этой статьи, раскрывающем особенности графического метода.

Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Обоснование метода

Докажем, что множество решений уравнения f(x)=g(x) есть множество абсцисс точек пересечения графиков функций y=f(x) и y=g(x) . Для этого достаточно показать, во-первых, что если x0 – корень уравнения f(x)=g(x) , то x0 – это абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , и, во-вторых, если x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) , то x0 – корень уравнения f(x)=g(x) . Приступаем к доказательству.

Пусть x0 – корень уравнения f(x)=g(x) . Тогда f(x0)=g(x0) – верное числовое равенство. Это равенство можно трактовать так: значения функции y=f(x) и y=g(x) в точке x0 совпадают. А из этого следует, что x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) .

Первая часть доказана. Переходим к доказательству второй части.

Пусть x0 – абсцисса одной из точек пересечения графиков функций y=f(x) и y=g(x) . Это означает, что значения функций y=f(x) и y=g(x) в точке x0 равны, значит, f(x0)=g(x0) . А из этого равенства следует, что x0 – корень уравнения f(x)=g(x) .

Так доказана вторая часть.

Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Особенности метода

Графический метод предполагает использование графиков функций. В общем случае построение графиков функций – дело непростое. Поэтому, графический метод решения уравнения обычно применяется лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, и при этом не видно другого аналитического метода решения. Это одна из особенностей графического метода решения уравнений.

Другая особенность касается получаемых по графикам результатов. Полученные по графикам результаты можно считать лишь приближенными. Дело здесь в том, что сами по себе графики функций — вещь не совсем точная (но при этом очень наглядная и во многих отношениях удобная), особенно если говорить о графиках, построенных от руки. Это следует из принципов, которыми мы руководствуемся при построении графиков функций. Что мы делаем для построения графика функции в общем случае? Проводим исследование функции, чтобы получить ряд «опорных» точек, таких как граничные точки области определения, максимумы-минимумы, точки перегиба, и понять поведение функции на всех интервалах ее области определения. После этого определяем несколько контрольных точек. Дальше переносим все определенные в ходе исследования точки на координатную плоскость и, сейчас внимание, соединяем их плавной линией в соответствии с выясненным в ходе исследования поведением функции. Эта «плавная линия» и есть график функции. О какой точности можно здесь говорить? Понятно, что она определяется точностью нашего построения.

С приближенными, найденными по графикам, значениями корней уравнения можно так или иначе работать. В некоторых случаях определенные по графикам значения корней оказываются точными значениями, в чем позволяет убедиться проверка подстановкой. В других случаях есть возможность уточнить значения корней до требуемой степени точности, для этого существуют специальные методы уточнения значений корней. А вот если по графикам нет возможности определить количество корней, не говоря уже об их значении, то, почти наверняка, стоит отказываться от графического метода решения уравнения. Добавим наглядности сказанному.

Давайте посмотрим на изображенные в одной прямоугольной системе координат графики функций Как найти корни уравнения графическим способоми y=−x 2 +6·x−5 .
Как найти корни уравнения графическим способом

По этому чертежу сложно судить даже о количестве корней уравнения Как найти корни уравнения графическим способом, не говоря уже про их значения с приемлемой степенью точности. Здесь можно лишь грубо сказать, что если корни есть, то их значения находятся на промежутке от нуля до трех. Такую прикидку мы даем по той причине, что графики функций в обозначенном промежутке очень близки, почти совпадают. Если есть возможность построить графики более точно в обозначенном промежутке, то это немного проясняет картину:
Как найти корни уравнения графическим способом

Сейчас мы видим три точки пересечения, даже можем приближенно указать их абсциссы: 1 , 2 и 2,7 . Но опять же, это не более чем приближенные результаты, нуждающиеся в проверке и строгом обосновании.

Учитывая оговоренные особенности графического метода решения уравнения, для себя можно принять следующее: к графическому методу стоит обращаться лишь тогда, когда функции, отвечающие частям уравнения, довольно простые в плане построения графиков, когда по построенным графикам можно с уверенностью указать точное количество точек их пересечения, и когда не просматривается альтернативный метод решения.

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Алгоритм решения уравнений графическим методом

Анализ приведенной выше информации позволяет записать алгоритм решения уравнений графическим методом. Чтобы решить уравнение графически, надо:

  • Построить в одной прямоугольной системе координат графики функций, отвечающие левой и правой частям уравнения.
  • По чертежу определить все точки пересечения графиков:
    • если точек пересечения нет, то решаемое уравнение не имеет корней,
    • если точки пересечения имеются, то переходим к следующему шагу алгоритма.
  • По чертежу определить абсциссы всех точек пересечения графиков – это приближенные значения всех корней исходного уравнения.
  • Если есть основания полагать, что некоторые или все определенные на предыдущем шаге значения являются точными значениями корней решаемого уравнения, то осуществить их проверку, например, подстановкой.

Дадим краткий комментарий к последнему шага алгоритма. Иногда определенные по чертежу приближенные значения корней оказываются точными. Обычно это касается целых значений. Но, опять же, прежде чем утверждать, что найденные значения является точными корнями уравнения, сначала нужно осуществить проверку этих значений, например, проверку подстановкой.

Видео:Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Решение примеров

Графический метод решения уравнений начинает входить в арсенал изучающих математику в 7 классе сразу же после знакомства с координатной плоскостью и самой первой функцией – линейной функцией y=k·x+b . Именно тогда мы сталкиваемся с заданиями, наподобие следующего: с помощью графика линейной функции y=2·x−6 определить, при каком значении x будет y=0 [1, с. 50-51]. Для ответа на поставленный вопрос мы строим график указанной линейной функции y=2·x−6 .
Как найти корни уравнения графическим способом

По чертежу находим точку пересечения графика с осью Ox (ось Ox отвечает графику функции y=0 ), и определяем абсциссу точки пересечения: x=3 . По сути, мы решаем уравнение 2·x−6=0 графическим методом.

Чуть позже в 7 классе изучается функция y=x 2 . После этого опять заходит разговор о графическом методе решения уравнений, но уже более детальный, где метод уже называется своим именем и дается его алгоритм [1, с. 149-151; 2, с. 109]. Там с его помощью решаются уравнения, одной части которых отвечает функция y=x 2 , а другой – линейная функция y=k·x+b . Например, уравнение x 2 =x+1 . Для его решения строятся в одной системе координат соответствующие графики функций y=x 2 и y=x+1 :
Как найти корни уравнения графическим способом

Графики, очевидно, пересекаются в двух точках. Можно определить приближенные значения их абсцисс: Как найти корни уравнения графическим способом.

В 8 классе изучаются новые виды функций: y=k/x , квадратичная функция y=a·x 2 +b·x+c , Как найти корни уравнения графическим способом. И, естественно, рассматривается графический метод решения соответствующих уравнений. Особенно тщательно разбирается графическое решение квадратных уравнений. В учебнике Мордковича А. Г. приведены аж пять способов графического решения уравнения x 2 −2·x−3=0 [2, с. 127-131].

И так далее: изучаются функции Как найти корни уравнения графическим способом, степенные функции, тригонометрические, показательные, логарифмические, …, — рассматривается решение соответствующих уравнений графическим методом. Так к концу школьного курса математики мы начинаем воспринимать графический метод решения уравнений как общий метод, позволяющий решать уравнения не только определенных видов, но и уравнения, в которых уживаются самые разнообразные функции: показательные с корнями, тригонометрические с логарифмическими и т.д. Покажем решение такого уравнения.

Решите уравнение Как найти корни уравнения графическим способом

В заключение вспомним, что в этой статье при разговоре об особенностях графического метода решения уравнений мы обращались к иррациональному уравнению Как найти корни уравнения графическим способом. В качестве «благодарности» этому уравнению за помощь в обретении знаний приведем ссылку на его решение графическим методом.

Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;
  • повторение и закрепление графического способа решения уравнений;
  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
  • формирование мышления, направленного на выбор оптимального решения;
  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; Как найти корни уравнения графическим способом.

Как найти корни уравнения графическим способом

Слайд 3 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Как найти корни уравнения графическим способом

Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

Как найти корни уравнения графическим способом

Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Как найти корни уравнения графическим способом

Слайд 6 Найдите корни уравнения Как найти корни уравнения графическим способом, используя графический способ решения уравнений (Рис. 5).

Как найти корни уравнения графическим способом

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

Как найти корни уравнения графическим способом

  • в ячейку А1 ввести текст Х, в ячейку A2Y;
  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

Как найти корни уравнения графическим способом

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

Как найти корни уравнения графическим способом

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

  • выделить диапазон ячеек B2:V2;
  • на вкладке Вставка|Диаграммы|График выбрать вид График;
  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

Как найти корни уравнения графическим способом

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;
  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

Как найти корни уравнения графическим способом

3 этап: Определение корней уравнения.

График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Пример 2: Решить графическим способом уравнение Как найти корни уравнения графическим способом.

Для этого: в одной системе координат построить графики функций у1= Как найти корни уравнения графическим способоми у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=Как найти корни уравнения графическим способомвоспользоваться встроенной функцией Корень (Рис. 11).
  • Как найти корни уравнения графическим способом

    2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    Как найти корни уравнения графическим способом

    3 этап: Определение корней уравнения.

    Графики функций у1= Как найти корни уравнения графическим способоми у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение Как найти корни уравнения графическим способомимеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    Как найти корни уравнения графическим способом

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;

    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    Как найти корни уравнения графическим способом

    Как найти корни уравнения графическим способом

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения Как найти корни уравнения графическим способомс точностью до 0,001.

    • ввести функцию у=Как найти корни уравнения графическим способоми построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    Как найти корни уравнения графическим способом

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    Видео:Решение квадратных неравенств графическим методом. 8 класс.Скачать

    Решение квадратных неравенств графическим методом. 8 класс.

    Алгебра. 8 класс

    Тема: Решение уравнений графическим способом

    Содержание модуля (краткое изложение модуля):

    Решим графическим способом уравнение:

    Решить уравнение – значит найти такие значения x, при которых выполняется равенство x 2 = −3x
    Построим в одной системе координат два графика:
    график функции y = x 2 и график функции y = −3x.
    Для каждого графика составим таблицы значений
    y = x 2 – на рисунке синий график

    x0123−1−2−3
    y0149149

    y = −3x – на рисунке красный график

    x0123−1−2−3
    y0−3−6−9369

    Заметим, что графики пересекаются в двух точках: точке с координатами (0 ; 0) и в точке с координатами (–3 ; 9). Это значит, что при x = 0 и при x = –3 функции y = x 2 и y = −3x имеют одинаковые значения.
    Таким образом получаем, что при x = 0 и при x = –3 выполняется равенство x 2 = −3x.
    Значит значения x = 0 и x = –3 являются корнями уравнения x 2 = −3x.
    Корни, найденные графическим способом – приближённые. Чтобы доказать точность значений корней, надо каждый из них подставить в решаемое уравнение и проверить: выполняется ли полученное равенство.
    Подставим в уравнение x 2 = −3x значение x = 0.

    0 = 0 – верное равенство, значит x = 0 – точный корень уравнения x 2 = −3x.
    Подставим в уравнение x 2 = −3x значение x = –3.

    9 = 9 – верное равенство, значит x = −3 – точный корень уравнения x 2 = −3x.
    Подведём итог.
    Чтобы решить уравнение f1(x) = f2(x) графическим способом, необходимо:
    1) Построить в одной системе координат графики функций y = f1(x) и y = f2(x). Абсциссы точек пересечения – это приближённые корни уравнения f1(x) = f2(x).
    2) Необходимо подставить каждый приближённый корень в уравнение f1(x) = f2(x). Те корни, при которых получается верное равенство будут являться точными корнями уравнения f1(x) = f2(x).

    Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.

    🔥 Видео

    Графический метод решения уравнений 8 классСкачать

    Графический метод решения уравнений   8 класс

    8 класс, 21 урок, Графическое решение уравненийСкачать

    8 класс, 21 урок, Графическое решение уравнений

    Графический способ решения уравнений. Алгебра 8 класс.Скачать

    Графический способ решения уравнений. Алгебра 8 класс.

    Графический способ решения уравнений и неравенств | Алгебра 10 классСкачать

    Графический способ решения уравнений и неравенств | Алгебра 10 класс

    Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.Скачать

    Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.

    Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.

    Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСССкачать

    Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСС

    Решение системы линейных уравнений графическим способом. 7 классСкачать

    Решение системы линейных уравнений графическим способом. 7 класс

    Графический метод решения систем линейных уравнений 7 классСкачать

    Графический метод решения систем линейных уравнений 7 класс

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

    Решение системы уравнений графическим методомСкачать

    Решение системы уравнений графическим методом

    Графический способ решения уравнения | Профильная математикаСкачать

    Графический способ решения уравнения | Профильная математика

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?
    Поделиться или сохранить к себе: