Как найти координаты точки пересечения графиков уравнений не выполняя построения

Как найти точки пересечения графиков функций — алгоритмы и примеры правила и методики

Существует определенный класс задач по дисциплине «Алгебра и начало анализа», в которых нужно найти точки пересечения графиков функций без их построения. Решать такие задания довольно просто, когда известна определенная методика нахождения координат по оси абсцисс и ординат. Однако для этого необходимо научиться правильно находить корни уравнений различных типов.

Как найти координаты точки пересечения графиков уравнений не выполняя построения

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Общие сведения

Как найти координаты точки пересечения графиков уравнений не выполняя построения

Функция — некоторое выражение, описывающее зависимость между двумя величинами. Следует отметить, что последних может быть несколько. Параметр, который не зависит от других элементов, называется аргументом, а зависимое тождество — значением функции.

Точка пересечения графиков означает, что у системы уравнений существует общее решение. Следует отметить, что для их нахождения можно воспользоваться графическим и аналитическим методом. Первый подразумевает построение графического представления выражения с переменной.

Чтобы найти пересечение графиков функций аналитическим способом, необходимо решить уравнение, корни которого являются искомыми точками. Для их нахождения специалисты рекомендуют получить базовые понятия о равенствах с переменными, а также о методах их решения.

Классификация уравнений

Уравнение — тождество, содержащее неизвестные величины (переменные), которые следует найти при помощи определенного алгоритма. Последний зависит от типа выражений. Тождества классифицируются на несколько типов:

  • Линейные.
  • Квадратные.
  • Кубические.
  • Биквадратные.

    Линейными являются уравнения, содержащие единичную степень, т. е. 2t=4. Квадратные — тождества, у которых переменная возведена в квадрат. Они имеют следующий вид: Pt^2+St+U=0, где Р и S — коэффициенты при неизвестных, а U — свободный член.

    Кубическое — уравнение вида Ot^3+Pt^2+St+U=0, где O, Р и S — коэффициенты при переменных, а U — константа. Последний вид — равенства, в которых при переменной присутствует четвертая степень (Nt^4+Ot^3+Pt^2+St+U=0).

    Равносильные тождества

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

    При выполнении математических операций каждое выражение может быть заменено на эквивалентное, т. е. равносильное. Иными словами, равносильными называются уравнения, различные по составляющим их элементам, но имеющие одинаковые корни. Следует отметить, что ими являются также выражения, не имеющие решений. Математики выделяют три свойства: симметричность, транзитивность и разложение на множители.

    Формулировка первого: когда I уравнение равносильно II, то значит, и II равносильно I. Суть транзитивности состоит в том, что если I равносильно II, а II — III, то значит I эквивалентно III. Второе свойство имеет такую формулировку: произведение двух элементов, содержащих переменные, равное нулевому значению, эквивалентно двум выражениям, которые можно приравнять к 0. Математическая запись утверждения имеет такой вид: R(t)*S(t)=0 .

    Математические преобразования

    Для решения уравнения необходимо выполнить некоторые математические преобразования. Они должны выполняться грамотно, поскольку любая ошибка приводит к образованию ложных корней. Допустимыми операциями являются следующие:

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

  • Правильное раскрытие скобок с учетом алгебраической операции и знаков.
  • Упрощение выражения (приведение подобных величин).
  • Перенос элементов в любые части равенства с противоположным знаком.
  • Возможность прибавлять или вычитать эквивалентные величины.
  • Деление и умножение на любые эквивалентные значения, не превращающие тождества в пустое множество.

    Специалисты рекомендуют избегать операций, при которых сокращаются неизвестные величины. Следствием этого могут стать ложные корни. Кроме того, делитель не должен иметь значения, при которых его значение равно 0. Последнее условие следует всегда проверять, а при решении ни один корень уравнения не должен соответствовать значению переменной при нахождении окончательных корней.

    Иными словами, в выражении (t+2)^2=0 для упрощения можно разделить обе части на (t+2) при условии, что t не равно -2, т. к. [(t+2)^2]/(t+2)=0/(t+2).

    Однако при решении (t+2)=0 получается, что t=-2, а это недопустимо. Следовательно, вышеописанный метод не всегда подходит.

    Разложение на множители

    Для решения уравнений при выполнении математических преобразований могут потребоваться специальные формулы разложения на множители. Их еще называют тождествами сокращенного умножения. К ним относятся следующие:

  • Квадрат суммы и разности: (p+r)^2=p^2+2pr+r^2 и (p-r)^2=p^2-2pr+r^2 соответственно.
  • Разность квадратов: p^2-r^2=(p-r)(p+r).

    В некоторых случаях можно воспользоваться сразу двумя соотношениями, т. е. выделить квадрат суммы, а затем из первого — разность квадратов. Выделение первого осуществляется группировкой посредством скобок в выражении, а затем введение положительного и отрицательного элементов, т. е. s^2+4s-5=s^2+4s+4-4-5=(s^2+4s+4)-4-5=(s+2)^2 -9. Для получения всех элементов формулы «p+r)^2=p^2+2pr+r^2» нужно прибавить, а затем отнять 4. При этом значение равенства не изменится, поскольку 4-4=0.

    Следует отметить, что математические преобразования выражения (s+2)^2 -9 не заканчиваются, поскольку его можно представить в виде разности квадратов, т. е. (s+2-9)(s+2+9)=(s-7)(s+11). Кроме того, формулы сокращенного умножения рекомендуется применять при понижении степени.

    Видео:Не выполняя построения графиков, найдите координаты точки пересечения прямых. Алгебра 7 класс.Скачать

    Не выполняя построения графиков, найдите координаты точки пересечения прямых. Алгебра 7 класс.

    Методики нахождения точек

    Чтобы узнать, пересекаются ли графики функций, нужно приравнять соответствующие тождества, а затем решать уравнение. Однако при такой операции могут получиться различные равенства с неизвестными. В этом случае требуется обратить внимание на нижеописанные методики решения для каждого вида.

    Первой и второй степени

    Уравнение первой степени, или линейное, решается очень просто. Для этого необходимо перенести переменные величины в одну, а известные — в другую сторону. Методика решения имеет следующий вид:

  • Раскрыть скобки и привести подобные коэффициенты.
  • Выполнить перенос известных в одну, а неизвестных — в другую часть равенства.
  • Произвести необходимые математические преобразования.
  • Найти корень.

    Сложнее решается квадратное уравнение. Существует несколько способов нахождения его корней:

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

  • Разложить на множители.
  • Выделить полный квадрат.
  • Найти дискриминант.
  • По теореме Виета.

    Первый способ применяется довольно часто, поскольку с его помощью можно понижать степень при неизвестной величине. Второй подразумевает выделение квадрата по одной из формул сокращенного умножения. Чтобы воспользоваться одним из двух методов, необходимо знать соответствующие тождества (правила разложения на множители).

    Однако не всегда можно быстро решить квадратное уравнение при помощи первых двух методов. Еще один вариант — нахождение корней через дискриминант (Д), т. е. дополнительный параметр, позволяющий сразу находить решения. Он находится по следующей формуле: Д=(-S)^2 -4PU.

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

    Следует отметить, что при Д>0 переменная принимает два значения, которые превращают равенство в истину. Если Д=0, то корень только один. Когда Д

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

    Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта «Образование».

    Видео:Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать

    Точки пересечения графиков линейных функций. 7 класс.Образовательный

    Решение на Задание 1074 из ГДЗ по Алгебре за 7 класс: Макарычев Ю.Н.

    Условие

    Решение 1

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

    Решение 2

    Как найти координаты точки пересечения графиков уравнений не выполняя построения

    Поиск в решебнике

    Видео:Алгебра 7 класс. Как определить координаты точек пересечения графиков двух функций (5 урок из 5)Скачать

    Алгебра 7 класс. Как определить координаты точек пересечения графиков двух функций (5 урок из 5)

    Популярные решебники

    Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

    Издатель: А.Г. Мордкович, 2013г.

    Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

    Видео:Задача №322. Алгебра 7 класс Макарычев.Скачать

    Задача №322. Алгебра 7 класс Макарычев.

    ГДЗ учебник по алгебрее 7 класс Макарычев. Номер №372

    Не выполняя построения, найдите координаты точки пересечения графиков линейных функций:
    а ) y = 4 x + 9 и y = 6 x − 5 ;
    б ) y = 16 x − 7 и y = 21 x + 8 ;
    в ) y = 10 x − 7 и y = 5 ;
    г ) y = 0,1 x и y = 14 .

    Видео:Нахождение координат точек пересечения графика функции с осями координатСкачать

    Нахождение координат точек пересечения графика функции с осями координат

    ГДЗ учебник по алгебрее 7 класс Макарычев. Номер №372

    Решение а

    4 x + 9 = 6 x − 5
    4 x − 6 x = − 5 − 9
    − 2 x = − 14
    x = 7
    y = 4 x + 9 = 4 * 7 + 9 = 28 + 9 = 37
    ( 7 ; 37 ) − точка пересечения графиков линейных функций.

    Решение б

    16 x − 7 = 21 x + 8
    16 x − 21 x = 8 + 7
    − 5 x = 15
    x = − 3
    y = 16 x − 7 = 16 * (− 3 ) − 7 = − 48 − 7 = − 55
    (− 3 ;− 55 ) − точка пересечения графиков линейных функций.

    Решение в

    10 x − 7 = 5
    10 x = 5 + 7
    10 x = 12
    x = 1,2
    y = 5
    ( 1,2 ; 5 ) − точка пересечения графиков линейных функций.

    Решение г

    0,1 x = 14
    x = 140
    y = 14
    ( 140 ; 14 ) − точка пересечения графиков линейных функций.

    💡 Видео

    Координаты точки пересечения графиков функцийСкачать

    Координаты точки пересечения графиков функций

    Алгебра 7 класс. 12 октября. Находим точку пересечения графиков!Скачать

    Алгебра 7 класс. 12 октября. Находим точку пересечения графиков!

    Нахождение координат точек пересечения графика функции с осями координат. Алгебра 9 класс.Скачать

    Нахождение координат точек пересечения графика функции с осями координат. Алгебра 9 класс.

    Построить график ЛИНЕЙНОЙ функции и найти:Скачать

    Построить график  ЛИНЕЙНОЙ функции и найти:

    98 Алгебра 9 класс Найдите координаты точек пересечения графиков функцииСкачать

    98 Алгебра 9 класс Найдите координаты точек пересечения графиков функции

    № 287 - Алгебра 9 класс МерзлякСкачать

    № 287 - Алгебра 9 класс Мерзляк

    Линейная функция. Алгебра 7. Найдите координаты точек пересечения графика функции с осями координат.Скачать

    Линейная функция. Алгебра 7. Найдите координаты точек пересечения графика функции с осями координат.

    Нахождение координат точки пересечения графиков линейных функций. Пример 1Скачать

    Нахождение координат точки пересечения графиков линейных функций. Пример 1

    Нахождение точек пересечения графиков функцийСкачать

    Нахождение точек пересечения графиков функций

    Найти координаты точки пересечения прямыхСкачать

    Найти координаты точки пересечения прямых

    17.1 Вычислите координаты точек пересечения графиков функцийСкачать

    17.1 Вычислите координаты точек пересечения графиков функций

    7 класс. Учебник. N324бСкачать

    7 класс. Учебник. N324б

    Определить, принадлежит ли точка с заданными координатами графику функцииСкачать

    Определить, принадлежит ли точка с заданными координатами графику функции

    16. Показать что прямые пересекаются и найти точку их пересечения в пространствеСкачать

    16. Показать что прямые пересекаются и найти точку их пересечения в пространстве
  • Поделиться или сохранить к себе: