- Необходимое условие экстремума функции одной переменной
- Достаточное условие экстремума функции одной переменной
- Максимумы, минимумы и экстремумы функций
- Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.
- Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.
- Минимумы и максимумы вместе именуют экстремумами функции.
- В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.
- Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?
- Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?
- — Производная положительна там, где функция возрастает. — Производная отрицательна там, где функция убывает.
- — Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус. — Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.
- Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?
- Экстремумы функции: признаки существования, примеры решений
- Экстремумы функции, их необходимый и достаточный признаки
- Локальный характер экстремумов функции
- Ищем экстремумы функции вместе
- Найти экстремумы функции самостоятельно, а затем посмотреть решение
- Продолжаем искать экстремумы функции вместе
- 📸 Видео
Видео:ЕГЭ 2022: Задание 6. Количество точек экстремума функции по производнойСкачать
Необходимое условие экстремума функции одной переменной
Видео:АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать
Достаточное условие экстремума функции одной переменной
Если в точке x * выполняется условие:
Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3].
Решение.
Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 /2, f(3)=3 8 /81
Ответ: fmin= 5 /2 при x=2; fmax=9 при x=1
Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.
Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.
Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x — первое слагаемое. Тогда (49-x) — второе слагаемое.
Произведение будет максимальным: x·(49-x) → max
или
49x — x 2
Видео:Найти точки экстремума функцииСкачать
Максимумы, минимумы и экстремумы функций
Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.
Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.
Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.
Минимумы и максимумы вместе именуют экстремумами функции.
Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.
В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.
Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.
Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).
Видео:Свойства функции. Нули функции, экстремумы. 10 класс.Скачать
Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?
Давайте вместе найдем количество точек экстремума функции по графику производной на примере:
У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).
Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).
Видео:Точки ЭКСТРЕМУМА на графике производной / разбор ЕГЭ #27496Скачать
Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:
— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.
С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.
Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).
Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.
Начнем с (-13): до (-13) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.
(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.
(- 9): функция возрастает, а потом убывает – максимум.
Все вышесказанное можно обобщить следующими выводами:
— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.
Видео:Нахождение точек экстремума функции по графикам. ЕГЭ. Задание В8Скачать
Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:
- Найдите производную функции (f'(x)).
- Найдите корни уравнения (f'(x)=0).
- Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
- Определите знак производной в каждом промежутке (методом интервалов).
- Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
- Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
— если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
— если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
— если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.
Всё! Точки максимумов и минимумов найдены.
Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.
Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:
3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:
Теперь очевидно, что точкой максимума является (-2).
Видео:Нахождение условного экстремума функции двух переменных. Метод Лагранжа.Скачать
Экстремумы функции: признаки существования, примеры решений
Видео:Математика без Ху!ни. Экстремум функции 2х переменных.Скачать
Экстремумы функции, их необходимый и достаточный признаки
Точка экстремума функции — это точка области определения функции, в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции.
Нахождение эктремумов функции может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графиков. Кстати, будет полезным открыть в новом окне материал Свойства и графики элементарных функций. И ещё потребуются таблица производных простых функций и таблица производных сложных функций (откроются в новом окне), так как в примерах указано, какая именно табличная производная найдена.
Рассмотрим график непрерывной функции (рисунок снизу).
Определение. Точка x 1 области определения функции f(x) называется точкой максимума функции, если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) > f(x 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 1 максимум.
Определение. Точка x 2 области определения функции f(x) называется точкой минимума функции, если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 2 минимум.
Допустим, точка x 1 — точка максимума функции f(x) . Тогда в интервале до x 1 функция возрастает, поэтому производная функции больше нуля ( f ‘(x) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля ( f ‘(x) ). Тогда в точке x 1 производная функции равна нулю или не существует.
Допустим также, что точка x 2 — точка минимума функции f(x) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля ( f ‘(x) ), а в интервале после x 2 функция возрастает, а производная функции больше нуля ( f ‘(x) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.
Теорема Ферма (необходимый признак существования экстремума функции). Если точка x 0 — точка экстремума функции f(x) , то в этой точке производная функции равна нулю ( f ‘(x) = 0 ) или не существует.
Определение. Точки, в которых производная функции равна нулю или не существует, называются критическими точками.
Пример 1. Рассмотрим функцию .
В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.
Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками, позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно — максимум или минимум.
Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f(x) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с «плюса» на «минус», то точкой максимума, а если с «минуса» на «плюс», то точкой минимума.
Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.
Итак, чтобы определить точки экстремума функции, требуется выполнить следующее:
- Найти производную функции.
- Приравнять производную нулю и определить критические точки.
- Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с «плюса» на «минус», то критическая точка является точкой максимума, а если с «минуса» на «плюс», то точкой минимума.
- Вычислить значение функции в точках экстремума.
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Пример 2. Найти экстремумы функции .
Решение. Найдём производную функции (в таблице производных сложных функций — производная 6):
.
Приравняем производную нулю, чтобы найти критические точки:
.
Так как для любых значений «икса» знаменатель не равен нулю, то приравняем нулю числитель:
.
Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:
в интервале от минус бесконечности до 3 — знак минус, то есть функция убывает,
в интервале от 3 до плюс бесконечности — знак плюс, то есть функция возрастает.
То есть, точка x = 3 является точкой минимума.
Найдём значение функции в точке минимума:
.
Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.
Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f(x) , если вторая производная функции в этой точке не равна нулю ( f »(x) ≠ 0 ), причём, если вторая производная больше нуля ( f »(x) > 0 ), то точкой максимума, а если вторая производная меньше нуля ( f »(x) ), то точкой минимума.
Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.
Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.
Видео:Найти точку минимума функции (использование производной и знаков производной) из ЕГЭ по математикеСкачать
Локальный характер экстремумов функции
Из приведённых определений следует, что экстремум функции имеет локальный характер — это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.
Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок — максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок — минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.
Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .
То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума — наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.
Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума — точками локального максимума.
Видео:Найти точки экстремума и экстремумы функцииСкачать
Ищем экстремумы функции вместе
Пример 3. Найти экстремумы функции и построить её график.
Решение. Функция определена и непрерывна на всей числовой прямой. Её производная (и первое, и второе слагаемые — табличная производная 3) существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.
Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .
Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Пример 4. Найти экстремумы функции и построить её график.
Областью определения функции является вся числовая прямая, кроме точки , т.е. .
Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .
Находим производную (каждое слагаемое находим как табличную производную 3) и критические точки функции:
1) ;
2) ,
но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.
Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .
Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:
(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим
,
т.е. если , то .
Точек пересечения с осями график функции не имеет. Рисунок — в начале примера.
Видео:Сумма точек экстремума на графике функцииСкачать
Найти экстремумы функции самостоятельно, а затем посмотреть решение
Пример 5. Найти экстремумы функции .
Пример 6. Найти экстремумы функции .
Пример 7. Найти экстремумы функции .
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Видео:10 класс, 44 урок, Применение производной для исследования функций на монотонность и экстремумыСкачать
Продолжаем искать экстремумы функции вместе
Пример 8. Найти экстремумы функции .
Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .
Найдём первую производную функции (производная вида 2 в таблице производных сложной функции):
Найдём критические точки функции:
Точки и не могут быть точками экстремума, так как находятся на границе области определения функции. В точке производная функции меняет знак с плюса на минус, а в точке — с минуса на плюс. Следовательно, — точка максимума, а точка — точка минимума функции.
Найдём значения функции в этих точках:
Таким образом, экстремумы функции:
.
Пример 9. Найти экстремумы функции .
Решение. Найдём область определения функции.
Найдём критические точки функции:
Таким образом, у данной функции две критические точки: и . Определим значения производной в критических точках. При переходе через точку производная функции продолжает убывать (сохраняет знак минус), а при переходе через точку — начинает возрастать (меняет знак с минуса на плюс). Следовательно, — точка минимума функции.
Найдём значение функции в точке минимума:
Таким образом, минимум функции:
.
Пример 10. Найти экстремумы функции .
Решение. Найдём первую производную функции (первое слагаемое — производная вида 12 в таблице производных простых функций, второе — производная вида 6 в таблице производных сложной функции):
.
Найдём критические точки функции:
.
Так как для любого действительного x должно выполняться условие , то
.
Таким образом, данная функция имеет одну критическую точку. Определим значения производной в критической точке. При переходе через точку производная функции начинает убывать (меняет знак с плюса на минус). Следовательно, — точка максимума функции.
Найдём значение функции в точке максимума:
.
Таким образом, максимум функции:
.
📸 Видео
ЭКСТРЕМУМЫ ФУНКЦИИ точки экстремума функцииСкачать
Найти интервалы выпуклости и точки перегиба графика функцииСкачать
Алгебра 11 класс (Урок№16 - Экстремумы функции.)Скачать
ЕГЭ по математике. Профильный уровень. Задание 12. Максимум и минимум функции. ЭкстремумСкачать
Экстремум функции двух переменныхСкачать
Найти точки экстремума функцииСкачать
Найти количество точек экстремума по графику производнойСкачать
Точки экстремума, экстремумы функции.Скачать