На рисунке изображён график функции $y=f(x)$, определённой на интервале $(-4;10)$. Найдите количество решений уравнения $f'(x)=0$ на отрезке $[0;9]$.
Так как угловой коэффициент касательной $k=tg α=f'(x_0)=0$, то это означает, что касательная к графику данной функции параллельна оси абсцисс.
На отрезке $[0;9]$ построены все три касательные, параллельные оси абсцисс (см. рис.).
Видео:Отбор корней по окружностиСкачать
Метод подсчёта количества решений
Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.
В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.
Общая форма интересующего нас уравнения:
где n и m — положительные целые числа.
Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Нам нужен метод
Давайте начнём с частного случая общего уравнения:
Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):
Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:
и мы сможем подсчитать число решений — m+1.
Это было просто, верно?
Теперь возьмём немного более сложный вариант с тремя переменными, скажем:
С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):
Число решений в этом случае равно 10.
Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.
Значит, нужен эффективный метод.
Видео:#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать
Разрабатываем метод
Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:
Одним из решений было (5, 0). Давайте преобразуем его в:
Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:
Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:
Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.
В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:
Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.
Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:
где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.
Эта формула обычно записывается в компактной форме как:
Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:
Это то же самое число, что мы получили методом прямого счёта!
Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:
Некоторые решения можно записать в разложенном виде:
В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:
И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:
а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:
как и утверждалось выше.
Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:
Простейшее решение этого уравнения:
Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:
В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).
Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:
Видео:Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать
На рис. изображён график функции y=F (x)
323077. На рисунке изображён график функции y=F (x) — одной из первообразных некоторой функции f (x), определённой на интервале (–3;5). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке [–2;4].
Необходимо определить сколько имеется точек на данном графике, в которых F′(x) = 0. Мы знаем, что производная равна нулю в тех точках, где касательная к графику функции параллельна оси ох. Покажем эти точки на интервале [–2;4]:
Это точки экстремума данной функции F (x). Их десять.
💥 Видео
Находим решение тригонометрического уравнения на целочисленном отрезке Алгебра 10 классСкачать
Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Находим решение тригонометрического уравнения на интервале Алгебра 10 классСкачать
На рисунке изображен график функции. Найдите количество решений уравнения производная=0Скачать
Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать
Выборка с помощью окружностиСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Задача 7 ЕГЭ на производную и первообразную #29Скачать
Нахождение корней уравнения, принадлежащих промежуткуСкачать
Задание 8 ЕГЭ профиль Найдите количество решений уравнения производная равна нулю.Скачать
Найдите количество решений уравнения на рисунке | #shorts #репетиторство #егэ #огэ #гиа #математикаСкачать
Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Алгебра 7 класс. 19 сентября. Числовые промежуткиСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать