Как найти количество решений логического уравнения

Как найти количество решений логического уравнения

Сколько различных решений имеет уравнение J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В . Получим

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Видео:Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)

Методы решения систем логических уравнений
статья по информатике и икт (10 класс) по теме

Как найти количество решений логического уравнения

Методы решения систем логических уравнений при подготовке к ЕГЭ (задание В15)

Видео:КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23Скачать

КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23

Скачать:

ВложениеРазмер
Методы решения систем логических уравнений296.5 КБ

Видео:Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать

Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логика

Предварительный просмотр:

Методы решения систем логических уравнений

Решить систему логических уравнений можно, например, с помощью таблицы истинности (если количество переменных не слишком велико) или с помощью дерева решений, предварительно упростив каждое уравнение.

1. Метод замены переменных.

Ввод новых переменных позволяет упростить систему уравнений, сократив количество неизвестных. Новые переменные должны быть независимыми друг от друга . После решения упрощенной системы надо снова вернуться к первоначальным переменным.

Рассмотрим применение этого метода на конкретном примере.

Пример. Сколько различных решений имеет система уравнений

((X1 ≡ X2) ∧ (X3 ≡ X4)) ∨ (¬(X1 ≡ X2) ∧ ¬(X3 ≡ X4)) = 0

((X3 ≡ X4) ∧ (X5 ≡ X6)) ∨ (¬(X3 ≡ X4) ∧ ¬(X5 ≡ X6)) = 0

((X5 ≡ X6) ∧ (X7 ≡ X8)) ∨ (¬(X5 ≡ X6) ∧ ¬(X7 ≡ X8)) = 0

((X7 ≡ X8) ∧ (X9 ≡ X10)) ∨ (¬(X7 ≡ X8) ∧ ¬(X9 ≡ X10)) = 0

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Введем новые переменные: А=(X1 ≡ X2); В=(X3 ≡ X4); С=(X5 ≡ X6); D=(X7 ≡ X8); E=(X9 ≡ X10).

(Внимание! Каждая их переменных x1, x2, …, x10 должна входить только в одну из новых переменных А,В,С,D,Е, т.е. новые переменные независимы друг от друга).

Тогда система уравнений будет выглядеть так:

Построим дерево решений полученной системы:

Рассмотрим уравнение А=0, т.е. (X1 ≡ X2)=0. Оно имеет 2 корня:

Из этой же таблицы видно, что уравнение А=1 тоже имеет 2 корня. Расставим кол-во корней на дереве решений:

Чтобы найти количество решений одной ветви, надо перемножить количества решений на каждом ее уровне. Левая ветвь имеет 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2=32 решения; правая ветвь имеет тоже 32 решения. Т.е. вся система имеет 32+32=64 решения.

2. Метод рассуждений.

Сложность решения систем логических уравнений состоит в громоздкости полного дерева решений. Метод рассуждений позволяет не строить все дерево полностью, но понять при этом, сколько оно будет иметь ветвей. Рассмотрим этот метод на конкретных примерах.

Пример 1. Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) / (x2→x3) / (x3→x4) / (x4→x5 ) = 1

(y1→y2) / (y2→y3) / (y3→y4) / (y4→y5 ) = 1

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Первое и второе уравнения содержат независимые переменные, которые связаны третьим условием. Построим дерево решений первого и второго уравнений.

Чтобы представить дерево решений системы из первого и второго уравнений, надо каждую ветвь первого дерева продолжить деревом для переменных у . Построенное таким образом дерево будет содержать 36 ветвей. Некоторые из этих ветвей не удовлетворяют третьему уравнению системы. Отметим на первом дереве количество ветвей дерева «у» , которые удовлетворяют третьему уравнению:

Поясним: для выполнения третьего условия при х1=0 должно быть у1=1, т.е все ветви дерева «х» , где х1=0 можно продолжить только одной ветвью из дерева «у» . И только для одной ветви дерева «х» (правой) подходят все ветви дерева «у». Таким образом, полное дерево всей системы содержит 11 ветвей. Каждая ветвь представляет собой одно решение исходной системы уравнений. Значит, вся система имеет 11 решений.

Пример 2. Сколько различных решений имеет система уравнений

(X1 ≡ X2) ∨ (X1 ∧ X10) ∨ (¬X1 ∧ ¬ X10)= 1

(X2 ≡ X3) ∨ (X2 ∧ X10) ∨ (¬X2 ∧ ¬ X10)= 1.

(X9 ≡ X10) ∨ (X9 ∧ X10) ∨ (¬X9 ∧ ¬ X10)= 1

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение : Упростим систему. Построим таблицу истинности части первого уравнения:

Видео:Таблица истинностиСкачать

Таблица истинности

Задача №23. Решение систем логических уравнений.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1z2z3z4z5z6z7z8z9
010101010
101010101

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Как найти количество решений логического уравнения

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Как найти количество решений логического уравнения

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

🎥 Видео

Разбор 3 задания | ОГЭ по информатике 2021Скачать

Разбор 3 задания | ОГЭ по информатике 2021

Системы логических уравнений и логические уравнения - ЕГЭ по Информатике - Задание №23Скачать

Системы логических уравнений и логические уравнения - ЕГЭ по Информатике - Задание №23

Подготовка к ЕГЭ по информатике: как найти число решений логического уравнения с импликацией?Скачать

Подготовка к ЕГЭ по информатике: как найти число решений логического уравнения с импликацией?

Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать

Алгебраическое определение количества решений системы линейных уравнений |  Алгебра I

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Логические выражения, таблицы истинности ,структурная логическая схемаСкачать

Логические выражения, таблицы истинности ,структурная логическая схема

Построение таблиц истинностиСкачать

Построение таблиц истинности

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.

Построение таблиц истинностиСкачать

Построение таблиц истинности

Математика это не ИсламСкачать

Математика это не Ислам

Преобразование логических выражений / Упрощение выражений (практика) [Алгебра логики] #6Скачать

Преобразование логических выражений / Упрощение выражений (практика) [Алгебра логики] #6

Логические уравнения - ЕГЭ по Информатике - Задание №23Скачать

Логические уравнения - ЕГЭ по Информатике - Задание №23

[МИФ] Информатика ОГЭ. Задания 3. Значение логического выражения | 2022 годСкачать

[МИФ] Информатика ОГЭ. Задания 3. Значение логического выражения  | 2022 год

Решение задачи по теме "Информационный объём сообщения"Скачать

Решение задачи по теме "Информационный объём сообщения"

Решение логических выражений. Таблицы истинности. [Алгебра логики] #2Скачать

Решение логических выражений. Таблицы истинности. [Алгебра логики] #2

9 класс, 26 урок, Комбинаторные задачиСкачать

9 класс, 26 урок, Комбинаторные задачи
Поделиться или сохранить к себе: