О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- Как объяснить уравнения с х (икс) школьнику в 4 классе?
- Пример № 1
- Проверка:
- Пример № 2
- Проверка:
- Пример № 3
- Проверка:
- Пример № 4
- Проверка:
- Пример № 5
- Проверка:
- Пример № 6
- Проверка:
- Теперь озвучиваем основные правила:
- Из своей практики
- Что такое уравнение: определение, решение, примеры
- Определение уравнения
- Корень уравнения
- Равносильные уравнения
- 📸 Видео
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Как объяснить уравнения с х (икс) школьнику в 4 классе?
Автор: Творческая Анна
Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.
У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.
Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.
Объяснение примеров с левой стороны, на правую сторону.
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Пример № 1
Пример уравнения для 4 класса со знаком плюс.
Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.
Х + 320 = 560 (выделила цифры зеленым маркером).
Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.
Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.
Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.
Проверка:
240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.
Всё верно! Значит мы решили уравнение правильно!
Видео:Решение матричных уравненийСкачать
Пример № 2
Пример уравнения для 4 класса со знаком минус.
Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.
Х – 180 = 80 (выделила цифры зеленым маркером).
Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.
Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.
Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.
Проверка:
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Пример № 3
Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.
400 – х = 275 + 25 Складываем числа.
400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.
400 — 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.
Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.
Проверка:
400 – 100 = 275 + 25 Считаем.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Пример № 4
Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.
72 – х = 18 * 3 Выполняем умножение. Переписываем пример.
72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.
72 – 54 = х Считаем.
18 = х Меняем местами, для удобства.
Проверка:
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Пример № 5
Пример уравнения с х с вычитанием и сложением для 4 класса.
Х – 290 = 470 + 230 Складываем.
Х – 290 = 700 Выставляем числа с одной стороны.
Х = 700 + 290 Считаем.
Проверка:
990 – 290 = 470 + 230 Выполняем сложение.
Видео:Уравнение. 5 класс.Скачать
Пример № 6
Пример уравнения с х на умножение и деление для 4 класса.
15 * х = 630/70 Выполняем деление. Переписываем уравнение.
15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.
Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.
Проверка:
15*6 = 630 / 7 Выполняем умножение и вычитание.
Видео:Уравнения с дробями. Алгебра 7 класс.Скачать
Теперь озвучиваем основные правила:
- Умножаем, складываем, делим или вычитаем;
Выполняем то, что можно сделать, уравнение станет немного короче.
Х в одну сторону, цифры в другую.
Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.
При переносе х или цифры через знак равенства, их знак меняется на противоположный.
Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.
При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.
Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.
Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.
Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.
Данное подробное описание, как объяснить уравнения с х школьнику для:
- родителей;
- школьников;
- репетиторов;
- бабушек и дедушек;
- учителей;
Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.
Видео:Простые уравнения. Как решать простые уравнения?Скачать
Из своей практики
Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.
При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.
В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.
Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.
Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.
Видео:Математика | Кубические уравнения по методу СталлонеСкачать
Что такое уравнение: определение, решение, примеры
В данной публикации мы рассмотрим, что такое уравнение, а также, что значит его решить. Представленная теоретическая информация сопровождается практическими примерами для лучшего понимания.
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Определение уравнения
Уравнение – это равенство, содержащее неизвестное число, которе требуется найти.
Это число обычно обозначается маленькой латинской буквой (чаще всего – x , y или z ) и называется переменной уравнения.
Другими словами, равенство является уравнением только в том случае, когда содержит букву, значение которой требуется вычислить.
Примеры простейших уравнений (одна неизвестная и одно арифметическое действие):
В более сложных уравнениях переменная может встречаться несколько раз, также, в них могут содержаться скобки и более сложные математические операции. Например:
Также, в уравнении может быть несколько переменных, например:
Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Корень уравнения
Допустим, у нас есть уравнение .
Оно обращается в верное равенство при . Это значение (число) и является корнем уравнения.
Решить уравнение – это значит найти его корень или корни (в зависимости от количества переменных), либо доказать, что их нет.
Обычно, корень пишется так: . Если корней несколько, они просто перечисляются через запятую, например: , .
Примечания:
1. Некоторые уравнения могут быть не решаемы.
Например: . Какое бы мы число не подставили вместо x , получить верное равенство не получится. В этом случае в ответе пишется: “уравнение не имеет корней”.
2. Некоторые уравнения имеют бесконечное множество корней.
Например: . В данном случае решением является любое число, т.е. , , , где N , Z и R – это натуральные, целые и действительные числа, соответственно.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Равносильные уравнения
Уравнения, имеющие одни и те же корни, называются равносильными.
Например: и . У обоих уравнений решением является число два, т.е. .
Основные равносильные преобразования уравнений:
1. Перенос какого-то слагаемого из одной части уравнений в другую с изменением его знака на противоположный.
Например: 3x + 7 = 5 равносильно .
2. Умножение/разделение обеих частей уравнения на одно и то же число, не равное нулю.
Например: 4x – 7 = 17 равносильно .
Уравнение, также, не изменится, если к обеим его частям прибавить/отнять одно и то же число.
3. Приведение подобных слагаемых.
Например: 2x + 5x – 6 + 2 = 14 равносильно .
📸 Видео
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать