Как найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

Как найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

Как найти графическое решение уравнения в маткаде

В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

Как найти графическое решение уравнения в маткаде

При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

Как найти графическое решение уравнения в маткаде

Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства Как найти графическое решение уравнения в маткадесистема уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

Как найти графическое решение уравнения в маткаде

Пример использования блока given…find для решения системы уравнений:

Видео:Числовое решение. Функция root в MathCAD 14 (28/34)Скачать

Числовое решение. Функция root в MathCAD 14 (28/34)

Графический способ решения систем алгебраических уравнений с использованием программного пакета MathCAD

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Как найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткаде

Графический способ решения систем алгебраических уравнений

с использованием программного пакета Mat h CAD

Автор работы : Сенашева Юлия Викторовна, ученица 7 класса

Научный руководитель : Несивкина Галина Анатольевна

учитель математики первой квалификационной категории.

Учреждение : МБОУ «Ширинская» средняя общеобразовательная школа №18

Ширинского района Республики Хакасия.

1.1.Алгоритм построения графика линейного уравнения с помощью MathCAD;……4

1.2. Исследование расположения прямой, в зависимости от изменения значения k,

в программе MathCAD . 5.

1.3 Алгоритм графического метода решения систем линейных уравнений

с помощью программы MathCAD………………………………………………………6

Актуальность работы : При изучении следующих разделов математики: взаимное расположение графиков линейных функций , графический способ решения системы линейных уравнений столкнулась с тем, что для глубокого исследования этих тем ,отводиться мало времени. Считаю, что изучение этого материала требует более детального рассмотрения, так как он прослеживается в различных заданиях повышенной сложности, в задачах математических олимпиад , в заданиях на ОГЭ, на ЕГЭ и вступительных экзаменов в Высшие Учебные Заведения.

Мотивация : как увеличить время на изучение тем: взаимное расположение графиков линейных функций, графический способ решения системы линейных уравнений.

Проблема: необходимо найти удобный , наглядный, а самое главное быстрый способ построения графиков уравнений.

Гипотеза : объект исследования «Линейная функция» ( А.Г.Мордкович ,Алгебра 7 класс,глава2),»Системы двух линейных уравнений с двумя переменными» (глава3).

Цель работы : показать графический способ решение систем алгебраических уравнений с применением популярного инженерного программного пакета MathCAD. Исследование предоставляет базовые знания работы с программой MathCAD, как они могут быть применены для решения системы двух линейных уравнений с двумя переменными графическим методом.

Результаты исследования : в процессе исследования:

-из множества программ, позволяющих рисовать графики функций, выполнять построения, была выбрана MathCAD , которая является средой визуального программирования, то есть не требует знания специфического набора команд. Простота освоения пакета, дружественный интерфейс, относительная непритязательность к возможностям компьютера явились главными причинами того, что именно этот пакет был выбран мной для решения данной проблемы;

-изучила алгоритм построения графика линейного уравнения с помощью программы MathCAD;

-изучила графический метод решения систем линейных уравнений с помощью программы MathCAD и убедилась в том, что графический метод решения системы линейных уравнений имеет большое значение.

С помощью программы MathCAD мною были выполнены все задания из задачника Алгебра 7 класс по этой теме, ряд заданий олимпиадного характера и задания для подготовки к ОГЭ. Я смогла за короткий срок выполнить большой объем учебного материала, причем в очень наглядной и доступной форме.В процессе работы не тратила время на составление таблиц и построение графиков в тетради .Получился большой запас времени на отработку заданий повышенной сложности.

Перспективы: использовать программный продукт MathCAD., для дальнейшего изучения алгебры 7 класса (глава 8,параграф38.) ,решения задач повышенной сложности, решения заданий из ОГЭ.

В данной работе были рассмотрены примеры , каким образом решаются на MathCAD разнообразные математические задачи (решение систем линейных уравнений). Данная работа поможет ученикам быстро освоить основные навыки работы с пакетом MathCAD, а примеры и способы решения помогут их закрепить для решения новых задач.

1.1 Алгоритм построения графика линейного уравнения с помощью программы MathCAD;

7.17. На координатной плоскости хОу постройте график уравнения:

1.Задать функцию, приведенную выше. Вставить оператор абсолютного значения

2.На вкладке Графики в группе Кривые щелкнуть Вставить график , а затем выбрать График ХУ .

Как найти графическое решение уравнения в маткаде

Появиться пустой пустой график

Как найти графическое решение уравнения в маткаде

3.В местозаполнителе оси У ,в левой или правой части ввести функцию у = -х+4.

4.В местозаполнителе оси Х внизу графика ввести х. Нажать клавишу «Ввод», появиться линейная кривая.

Как найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

8.28. Постройте график линейной функции у = х+4 и у=2х

а) координаты точек пресечения графика с осями координат;

б) значение у, соответствующее значению х=—2;-1;1.

в ) значение х ,которому соответствует значение у, равное-2;2;4.

1.Задать функцию, приведенную выше. Вставить оператор абсолютного значения

2.На вкладке Графики в группе Кривые щелкнуть Вставить график , а затем выбрать График ХУ

Как найти графическое решение уравнения в маткаде

Появиться пустой график.

3.В местозаполнителе оси У ,в левой или правой части ввести функцию у = х+4.

4.В местозаполнителе оси Х внизу графика ввести х. Нажать клавишу «Ввод», появиться линейная

Как найти графическое решение уравнения в маткаде

5.Установить курсор справа от функции. Щелкнуть Добавить кривую .

Как найти графическое решение уравнения в маткаде

Появиться новый местозапонитель оси У под текущим местозаполнителем

. Как найти графическое решение уравнения в маткаде

А ) Найти координаты точек пресечения графика с осями координат.

На графике точки пересечения: х=0,у=- 4

Б) Найти значение у, соответствующее значению х = —2;-1;1.

В) Найти значение х ,которому соответствует значение у, равное-2;2;4.

Внесем данные и получим следующее распределение по столбцам .

Как найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткадеКак найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

1.2. Исследование расположения прямой, в зависимости от изменения значения k, в программе MathCAD;

у=3х+4, у=3х, у = -3х,у=2х, у=3х-4,

Как найти графическое решение уравнения в маткаде

1.3.Алгоритм графического метода решения систем линейных уравнений с помощью программы MathCAD;

11.10 .Решить графически систему уравнений (задачник Алгебра7 класс, часть 2)

Как найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

Ответ: система имеет одно решение (2;2)

Пример1.Решить систему уравнений

Как найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

Ответ: система не имеет решений

Решить систему уравнений

Как найти графическое решение уравнения в маткаде

Как найти графическое решение уравнения в маткаде

Ответ: система имеет бесконечно много решений.

Вывод : графический метод решения системы линейных уравнений имеет большое значение. С его помощью можно сделать следующие важные выводы:

— графиком обоих уравнений системы линейных уравнений являются прямые;

-эти прямые могут пересекаться, причем только в одной точке,- это значит, что система имеет единственное решение;

-эти прямые могут быть параллельны — это значит, что система не имеет решений( система несовместна);

-эти прямые могут совпасть — это значит, что система имеет бесконечно много решений (система не определена).

Видео:Mathcad-09. Пример: уравненияСкачать

Mathcad-09. Пример: уравнения

Как найти графическое решение уравнения в маткаде

РЕШЕНИЕ УРАВНЕНИЙ И СИСТЕМ УРАВНЕНИЙ

4 Решение уравнений и систем средствами Mathcad

Система Mathcad обладает широкими возможностями численного решения уравнений и систем уравнений.

Функция root, блоки Given…Find, Given…Minerr

В ходе численного решения обычно выделяют два этапа:

  • отделение корней – определение интервала нахождения каждого корня или определение приблизительного значения корня. В системе Mathcad наиболее наглядным будет отделение корней уравнения графическим способом;
  • уточнение корней – нахождение численного значения корня с указанной точностью.

Точность нахождения корня устанавливается с помощью системной переменной TOL (Convergence Tolerance – Допуск сходимости), которая по умолчанию равна 10 -3 . Чем меньше значение TOL, тем точнее, вообще говоря, находится корень уравнения. Однако оптимальным является TOL = 10 -5 . Переопределить значение TOL можно в окне математических свойств документа Math Options на вкладке Build-In Variables (Встроенные переменные) или присваиванием, например, TOL:=0.0001.

Для решения одного уравнения с одной неизвестной предназначена встроенная функция root, которая в общем виде задается

root(f(x), x, [a, b])

и возвращает значение переменной x, при котором функция f(x) обращается в ноль. Аргументы функции root:

  • f(x) – функция левой части уравнения f(x) = 0;
  • x – переменная, относительно которой требуется решить уравнение;
  • a, b (необязательные) – действительные числа, такие что a -1 слева: A -1 Ax=A -1 b. Учитывая, что A -1 A, вектор-столбец решений системы можно искать в виде

Этот прием используется в Mathcad так:

  1. задается матрица коэффициентов при неизвестных системы A;
  2. задается столбец свободных членов b;
  3. вводится формула для нахождения решения системы X:=A -1 b;
  4. выводится вектор решений системы X=.

Кроме того, пакет Mathcad имеет встроенную функцию

lsolve(A, b),

возвращающую вектор-столбец решений системы линейных алгебраических уравнений. Аргументами функции lsolve являются матрица коэффициентов при неизвестных системы и столбец свободных членов. Порядок решения аналогичен рассмотренному, но вместо формулы X:=A -1 b используется X:=lsolve(A, b).

Реализовать широко известный метод Гаусса решения систем линейных уравнений позволяет встроенная функция rref(M), возвращающая ступенчатый вид матрицы M. Если в качестве аргумента взять расширенную матрицу системы, то в результате применения rref получится матрица, на диагонали которой – единицы, а последний столбец представляет собой столбец решений системы.

Решение системы линейных уравнений можно осуществить с помощью блоков Given…Find, Given…Minerr. При этом неизвестным системы задается произвольное начальное приближение, а проверка необязательна.

Порядок выполнения лабораторной работы

  1. Загрузить Mathcad Start / All Programs / Mathsoft Apps / Mathcad (Пуск / Все программы / Mathsoft Apps / Mathcad).
  2. Сохранить в личной папке на диске z: новый документ с именем ФИО1, лучше использовать латинские буквы. Производить сохранение регулярно в процессе работы (Ctrl + S).
  3. Вставить текстовую область Insert / Text Region (Вставка / Область текста) и ввести в поле документа текст:

Лабораторная работа № 4
Решение уравнений и систем в Mathcad.

  1. В новой текстовой области ввести фамилию, имя, отчество, учебный шифр и номер варианта.
  2. Выполнить задание 1.

Задание 1. Решить уравнение Как найти графическое решение уравнения в маткаде.

Решение.

Решение данного уравнения будем проводить в два этапа: отделение корней уравнения графически, уточнение корней уравнения.

Определим функцию f(x), равную левой части данного уравнения, когда правая равна нулю:

Как найти графическое решение уравнения в маткаде

Зададим ранжированную переменную x на некотором диапазоне с мелким шагом, например:

Вставим в документ графическую область. Для этого выберем дважды пиктограмму с изображением графика Как найти графическое решение уравнения в маткадесначала на панели Math (Математика), затем на палитре графиков Graph или выполним из главного меню последовательность команд Insert / Graph / X-Y Plot (Вставка / График / X-Y Зависимость).

Снизу по оси абсцисс наберем x, а сбоку по оси ординат введем f(x).

Для появления графика щелкнем левой клавишей мыши вне графической области.

Отформатируем график функции f(x). Для этого щелкнем правой клавишей мыши в области графика и выберем в контекстном меню команду Format (Формат). Установим пересечение осей графика (CrossedТолько оси), добавим вспомогательные линии по координатным осям (Grid LinesВспомогательные линии). Отменим при этом автосетку (AutogridАвтосетка) и установим количество линий сетки, равное 10.

Для подтверждения внесенных изменений нажмем последовательно кнопки Apply (Применить) и ОК.

После указанных преобразований график функции f(x) будет выглядеть следующим образом:

Как найти графическое решение уравнения в маткаде

Из графика функции f(x) видно, что уравнение Как найти графическое решение уравнения в маткадеимеет три корня, которые приблизительно равны: x1 ≈ -1; x2 ≈ 1; x3 ≈ 2,5.

Этап отделения корней завершен.

Уточним теперь корни уравнения с помощью функции root.

Присвоим начальное приближение переменной x и укажем точность поиска корня:

Уточним заданное приближение к значению корня с помощью функции root:

Выполним проверку, подтверждающую, что первый корень найден с заявленной точностью:

Как найти графическое решение уравнения в маткаде

Начальное приближение можно не задавать при использовании в качестве аргументов root границ отрезка нахождения корня, например, второй корень можно уточнить:

Как найти графическое решение уравнения в маткаде

Задание 2. Решить уравнение Как найти графическое решение уравнения в маткаде.

Решение.

Напечатаем левую часть уравнения, не приравнивая выражение к 0, и выделим синим курсором переменную x:

Как найти графическое решение уравнения в маткаде

Выберем из главного меню Symbolics / Polynomial Coefficients (Символика / Коэффициенты полинома). Появившийся вектор коэффициентов полинома выделим целиком синим курсором и вырежем в буфер обмена, используя кнопку Вырезать Как найти графическое решение уравнения в маткадена панели инструментов Formatting (Форматирование) или комбинацию клавиш Ctrl + X.

Напечатаем v := и вставим вектор из буфера обмена, используя кнопку Вставить Как найти графическое решение уравнения в маткадена панели инструментов или комбинацию клавиш Ctrl + V.

Для получения результата напечатаем polyroots(v) =:

Как найти графическое решение уравнения в маткаде

Задание 3. Решить систему линейных уравнений Как найти графическое решение уравнения в маткадеСделать проверку.

Решение.

1-й способ. Использование блока Given … Find.

Зададим всем неизвестным, входящим в систему уравнений, произвольные начальные приближения, например:

Напечатаем слово Given. Установим визир ниже и наберем уравнения системы, каждое в своем блоке. Используем при этом логический знак равенства (Ctrl + =).

После ввода уравнений системы напечатаем X := Find(x, y, z) и получим решение системы в виде вектора, состоящего из трех элементов:

Как найти графическое решение уравнения в маткаде

Сделаем проверку, подставив полученные значения неизвестных в уравнения системы, например, следующим образом

Как найти графическое решение уравнения в маткаде

После набора знака «=» в каждой строке должен быть получен результат, равный или приблизительно равный правой части системы. В данном примере системная переменная ORIGIN = 1.

2-й способ. Использование блока Given…Minerr.

Порядок решения системы этим способом аналогичен порядку использования блока Given … Find и представлен ниже вместе с проверкой:

Как найти графическое решение уравнения в маткаде

3-й способ. Решение системы линейных уравнений матричным способом.

Создадим матрицу А, состоящую из коэффициентов при неизвестных системы. Для этого напечатаем A := , вызовем окно создания массивов (Ctrl + M). Число строк (Rows) и столбцов (Columns) матрицы данной системы равно 3. Заполним пустые места шаблона матрицы коэффициентами при неизвестных системы, как показано ниже:

Как найти графическое решение уравнения в маткаде

Зададим вектор b свободных членов системы. Сначала напечатаем b :=, затем вставим шаблон матрицы(Ctrl + M), где количество строк (Rows) равно 3, а количество столбцов (Columns) равно 1. Заполним его:

Как найти графическое решение уравнения в маткаде

Решим систему матричным способом по формуле

Как найти графическое решение уравнения в маткаде

Решим систему с помощью функции lsolve:

Как найти графическое решение уравнения в маткаде

Для проверки правильности решения системы, полученного матричным способом, достаточно вычислить произведение A·X, которое должно совпасть с вектором-столбцом свободных членов b:

📽️ Видео

MathCAD Решение уравнений с помощью функции root 1 вариантСкачать

MathCAD  Решение уравнений с помощью функции root 1 вариант

Средство для решения систем уравнений в MathCAD 14 (29/34)Скачать

Средство для решения систем уравнений в MathCAD 14 (29/34)

Пример решения уравнения в MathCAD 14 (33/34)Скачать

Пример решения уравнения в MathCAD 14 (33/34)

Решение СЛАУ в пакете MathCadСкачать

Решение СЛАУ в пакете MathCad

MathCAD Решение системы уравненийСкачать

MathCAD  Решение системы уравнений

7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Основы работы в Mathcad ГрафикиСкачать

Основы работы в Mathcad  Графики

Ключевое слово solve в MathCAD 14 (26/34)Скачать

Ключевое слово solve в MathCAD 14 (26/34)

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Числовое решение. Функция polyroots в MathCAD 14 (27/34)Скачать

Числовое решение. Функция polyroots в MathCAD 14 (27/34)

Найти корень уравнения на заданном интервале (MathCad)Скачать

Найти корень уравнения на заданном интервале (MathCad)

Mathcad Prime (часть 2)Скачать

Mathcad Prime (часть 2)

Графический метод решения задачи линейного программирования (ЗЛП)Скачать

Графический метод решения задачи линейного программирования (ЗЛП)

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)
Поделиться или сохранить к себе: