Формула для вычисления длины дуги кривой заданной уравнением у=f(x) в прямоугольной системе координат:
a — начала дуги по оси OX;
b — конец дуги по оси OX a
Если плоская кривая задана уравнением x=g(y) то формула имеет вид:
c — начала дуги по оси OY;
d — конец дуги по оси OY a
Если кривая задана в полярных координатах r=r(φ), α≤φ≤β, то длина дуги вычисляется по формуле:
Если кривая задана параметрическим уравнением вида x=x(t) и y=y(t), то длина дуги определяется по формуле
t2, t1 — значения параметров, которые соответствуют концам дуги t1
Найти длину дуги функции на промежутке от 0 до 1.
Найдем производную функции:
Возведём в квадрат функцию:
Подставляя в формулу, найдем длину дуги:
Найти длину дуги окружности от точки $left( right)$ до точки $left( right)$. Уравнение окружности задано в параметрическом виде.
Найдем параметр t в точках M1 и M2, решим системы уравнений.
Здесь t1=0
Подставляя в формулу, найдем длину дуги окружности.
Вычислить длину дуги одного лепестка циклоиды. Уравнение циклоиды задано параметрическим уравнением.
Продифференцируем по t параметрические уравнения циклоиды:
Подставляя в формулу, получаем
- One comment
- Как найти длину дуги кривой с помощью интеграла
- Вычисление длины дуги кривой, заданной в прямоугольных координатах
- Вычисление длины дуги кривой, заданной параметрически
- Вычисление длины дуги кривой, заданной в полярных координатах
- Калькулятор длины дуги кривой линии в декартовых координатах
- 🔥 Видео
Видео:Нахождение длины дуги кривойСкачать
One comment
Была бы оценка 5, если бы не дурак, который не от большого ума изукрасил весь текст, особенно формулы и ответы, серыми узорами! Сколько времени и усилий ушло на расшифровку ответов! Так что 3,5 балла — это ещё слишком много! Так и передайте идеологу этой мазни!
Видео:Длина дуги кривой| Урок 1| Надежда Павловна МедведеваСкачать
Как найти длину дуги кривой с помощью интеграла
Задачи на вычисление длины дуги кривой — однотипные. Существуют чёткие схемы для решения таких задач по формулам, которые отличаются в зависимости от того, какими и сколькими уравнениями задана кривая. Формулы представляют собой интегралы от корня, под которым в тех или иных сочетаниях присутствуют производные функций, которыми задана кривая. Следовательно, для того, чтобы вычислять длину дуги кривой, требуется уметь вычислять производные и интегралы. При вычислении интегралов возможны типичные трудности, связанные, например, с выбором подходящей подстановки. Эти задачи будем решать в примерах к данному уроку.
Видео:Нахождение длины дуги кривой.Скачать
Вычисление длины дуги кривой, заданной в прямоугольных координатах
Пусть в прямоугольных координатах на плоскости уравнением y = f(x) задана кривая.
Найдём длину дуги AB этой кривой, заключённой между вертикальными прямыми x = a и x = b (рисунок ниже).
Возьмём на дуге AB точки A, M 1 , M 2 , . M i , . B с абсциссами x 0 = a, x 1 , x 2 , . x i , . b = x n и проведём хорды AM 1 , M 1 M 2 , . M n-1 B , длины которых обозначим соответственно через Δs 1 , Δs 2 , . Δs n . Тогда получим ломаную AM 1 M 2 . M n-1 B , вписанную в дугу AB. Длина ломаной равна
.
Длиной s дуги AB называется тот предел, к которому стремится длина вписанной ломаной, когда длина её наибольшего звена стремится к нулю:
.
Этот предел интегральной суммы равен определённому интегралу
(1).
Формула выше и есть формула для вычисления дуги кривой.
Пример 1. Найти длину дуги кривой , если .
Решение. Находим производную данной функции:
Используем формулу (1), подставляя найденную производную:
Ответ: длина дуги кривой равна 74.
Пример 2. Найти длину окружности .
Решение. Вычислим сначала длину четвёртой части окружности, лежащей в первом квадранте. Тогда уравнение дуги будет:
,
откуда находим производную функции:
Используем формулу (1) подставляя в неё производную, получаем:
Ответ: длина всей окружности равна .
Если в прямоугольных координатах уравнениями z = x(x) и y = y(x) задана пространственная кривая, то длина её дуги вычисляется по формуле:
. (2)
Видео:Как брать неберущийся интеграл Задача Найти длину дуги параболыСкачать
Вычисление длины дуги кривой, заданной параметрически
Найдём теперь длину дуги кривой в том случае, когда кривая задана параметрическими уравнениями:
В этом случае длину дуги кривой следует находить по формуле
(3).
Пример 3. Найти длину дуги кривой, заданной параметрическими уравнениями
если .
Решение. Рассчитаем интервал, в котором будет меняться значение t, если :
Вычислим производные функций x и y:
Используем формулу (3):
.
Ответ: длина дуги кривой равна 26.
Если параметрическими уравнениями
задана пространственная кривая, то длина её дуги вычисляется по формуле:
. (4)
Пример 4. Найти длину дуги винтовой линии, заданной параметрическими уравнениями
Решение. Вычислим производные функций x, y и z:
Используем формулу (4):
Видео:Длина дуги кривойСкачать
Вычисление длины дуги кривой, заданной в полярных координатах
Пусть кривая задана в полярных координатах:
Длина её дуги вычисляется по формуле:
(5).
Пример 5. Найти длину дуги кривой, заданной в полярных координатах .
Решение. Вычислим производную функции:
.
Заданная кривая — кардиоида (рисунок выше). Так как она симметрична, вычислим только ту часть длины дуги, у которой и и умножим её на 2. Используем формулу (5):
.
Видео:Как узнать длину линий в макете, используя CorelDraw?Скачать
Калькулятор длины дуги кривой линии в декартовых координатах
Одним из приложений определенного интеграла является вычисление длины дуги плоской кривой. На рисунке изображен график функции :
Для того, чтобы узнать длину дуги кривой линии изображенной на рисунке, необходимо вычислить определенный интеграл:
В более общем случае, если у нас задана функция в декартовых координатах и стоит задача найти длину дуги этой кривой между точками и , нам необходимо вычислить интеграл:
В приведенной выше формуле, выражение означает, что сначала нужно вычислить производную функции , а затем полученное выражение возвести в квадрат.
Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, позволяет вычислить длину кривой, заданной в декартовых координатах для любой, даже очень сложной функции.
🔥 Видео
Видеоурок "Длина дуги кривой"Скачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать
Кривизна кривой, заданной уравнениемСкачать
14. Что такое параметрически заданная функция, производная параметрически заданной функции.Скачать
Астроида: найдем площадь и длину через определенный интегралСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
14.1. Касательная к параметрически заданной функцииСкачать
ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать
CorelDraw для начинающих. Как узнать длину кривой.Скачать
Длина дуги окружности. 9 класс.Скачать
Длина параболы и спирали Архимеда: что у них общего?Скачать
Построение кривой в полярной системе координатСкачать
1703 Вычисление длины линии в полярной системе координатСкачать