Как найти дельту в матричном уравнении

Решение матричных уравнений: теория и примеры

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение матричных уравнений: как это делается

Матричные уравнения имеют прямую аналогию с простыми алгебраическими уравнениями, в которых присутствует операция умножения. Например,

где x — неизвестное.

А, поскольку мы уже умеем находить произведение матриц, то можем приступать к рассмотрению аналогичных уравнений с матрицами, в которых буквы — это матрицы.

Итак, матричным уравнением называется уравнение вида

где A и B — известные матрицы, X — неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида AX = B , обе его части следует умножить на обратную к A матрицу Как найти дельту в матричном уравнениислева:

Как найти дельту в матричном уравнении.

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: Как найти дельту в матричном уравнении, поэтому

Как найти дельту в матричном уравнении.

Так как E — единичная матрица, то EX = X . В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A , слева, на матрицу B :

Как найти дельту в матричном уравнении.

Как решить матричное уравнение во втором случае? Если дано уравнение

то есть такое, в котором в произведении неизвестной матрицы X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A , и умножать матрицу B на неё справа:

Как найти дельту в матричном уравнении,

Как найти дельту в матричном уравнении,

Как найти дельту в матричном уравнении.

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как Как найти дельту в матричном уравнении. Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X . То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A .

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

Как найти дельту в матричном уравнении.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Решение матричных уравнений: примеры

Пример 1. Решить матричное уравнение

Как найти дельту в матричном уравнении.

Решение. Данное уравнение имеет вид AX = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде Как найти дельту в матричном уравнении, то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Как найти дельту в матричном уравнении.

Найдём алгебраические дополнения матрицы A :

Как найти дельту в матричном уравнении.

Составим матрицу алгебраических дополнений:

Как найти дельту в матричном уравнении.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

Как найти дельту в матричном уравнении.

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A :

Как найти дельту в матричном уравнении.

Наконец, находим неизвестную матрицу:

Как найти дельту в матричном уравнении

Пример 2. Решить матричное уравнение

Как найти дельту в матричном уравнении.

Пример 3. Решить матричное уравнение

Как найти дельту в матричном уравнении.

Решение. Данное уравнение имеет вид XA = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде Как найти дельту в матричном уравнении, то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Как найти дельту в матричном уравнении.

Найдём алгебраические дополнения матрицы A :

Как найти дельту в матричном уравнении.

Составим матрицу алгебраических дополнений:

Как найти дельту в матричном уравнении.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

Как найти дельту в матричном уравнении.

Находим матрицу, обратную матрице A :

Как найти дельту в матричном уравнении.

Находим неизвестную матрицу:

Как найти дельту в матричном уравнении

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

Как найти дельту в матричном уравнении.

Решение. Это уравнение первого вида: AX = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде Как найти дельту в матричном уравнении, то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Как найти дельту в матричном уравнении.

Найдём алгебраические дополнения матрицы A :

Как найти дельту в матричном уравнении

Составим матрицу алгебраических дополнений:

Как найти дельту в матричном уравнении

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

Как найти дельту в матричном уравнении.

Находим матрицу, обратную матрице A , и делаем это легко, так как определитель матрицы A равен единице:

Как найти дельту в матричном уравнении.

Находим неизвестную матрицу:

Как найти дельту в матричном уравнении

Пример 5. Решить матричное уравнение

Как найти дельту в матричном уравнении.

Решение. Данное уравнение имеет вид XA = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде Как найти дельту в матричном уравнении, то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Как найти дельту в матричном уравнении.

Найдём алгебраические дополнения матрицы A :

Как найти дельту в матричном уравнении

Составим матрицу алгебраических дополнений:

Как найти дельту в матричном уравнении.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

Как найти дельту в матричном уравнении.

Находим матрицу, обратную матрице A :

Как найти дельту в матричном уравнении.

Находим неизвестную матрицу:

Как найти дельту в матричном уравнении

Пример 6. Решить матричное уравнение

Как найти дельту в матричном уравнении.

Решение. Данное уравнение имеет вид AXB = C , то есть неизвестная матрица X находится в середине произведения трёх матриц. Поэтому решение следует искать в виде Как найти дельту в матричном уравнении. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

Как найти дельту в матричном уравнении.

Найдём алгебраические дополнения матрицы A :

Как найти дельту в матричном уравнении.

Составим матрицу алгебраических дополнений:

Как найти дельту в матричном уравнении.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

Как найти дельту в матричном уравнении.

Находим матрицу, обратную матрице A :

Как найти дельту в матричном уравнении.

Найдём матрицу, обратную матрице B .

Сначала найдём определитель матрицы B :

Как найти дельту в матричном уравнении.

Найдём алгебраические дополнения матрицы B :

Как найти дельту в матричном уравнении

Составим матрицу алгебраических дополнений матрицы B :

Как найти дельту в матричном уравнении.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей B :

Как найти дельту в матричном уравнении.

Находим матрицу, обратную матрице B :

Как найти дельту в матричном уравнении.

Видео:Решение матричных уравненийСкачать

Решение матричных уравнений

Решение матричных уравнений

Финальная глава саги.

Линейная алгебра и, в частности, матрицы — это основа математики нейросетей. Когда говорят «машинное обучение», на самом деле говорят «перемножение матриц», «решение матричных уравнений» и «поиск коэффициентов в матричных уравнениях».

Понятно, что между простой матрицей в линейной алгебре и нейросетью, которая генерирует котов, много слоёв усложнений, дополнительной логики, обучения и т. д. Но здесь мы говорим именно о фундаменте. Цель — чтобы стало понятно, из чего оно сделано.

Краткое содержание прошлых частей:

  • Линейная алгебра изучает векторы, матрицы и другие понятия, которые относятся к упорядоченным наборам данных. Линейной алгебре интересно, как можно трансформировать эти упорядоченные данные, складывать и умножать, всячески обсчитывать и находить в них закономерности.
  • Вектор — это набор упорядоченных данных в одном измерении. Можно упрощённо сказать, что это последовательность чисел.
  • Матрица — это тоже набор упорядоченных данных, только уже не в одном измерении, а в двух (или даже больше).
  • Матрицу можно представить как упорядоченную сумку с данными. И с этой сумкой как с единым целым можно совершать какие-то действия. Например, делить, умножать, менять знаки.
  • Матрицы можно складывать и умножать на другие матрицы. Это как взять две сумки с данными и получить третью сумку, тоже с данными, только теперь какими-то новыми.
  • Матрицы перемножаются по довольно замороченному алгоритму. Арифметика простая, а порядок перемножения довольно запутанный.

И вот наконец мы здесь: если мы можем перемножать матрицы, то мы можем и решить матричное уравнение.

❌ Никакого практического применения следующего материала в народном хозяйстве вы не увидите. Это чистая алгебра в несколько упрощённом виде. Отсюда до практики далёкий путь, поэтому, если нужно что-то практическое, — посмотрите, как мы генерим Чехова на цепях Маркова.

Видео:Как найти определитель матрицы 2х2, 3х3 и 4х4Скачать

Как найти определитель матрицы 2х2, 3х3 и 4х4

Что такое матричное уравнение

Матричное уравнение — это когда мы умножаем известную матрицу на матрицу Х и получаем новую матрицу. Наша задача — найти неизвестную матрицу Х.

Как найти дельту в матричном уравнении

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Шаг 1. Упрощаем уравнение

Вместо известных числовых матриц вводим в уравнение буквы: первую матрицу обозначаем буквой A, вторую — буквой B. Неизвестную матрицу X оставляем. Это упрощение поможет составить формулу и выразить X через известную матрицу.

Как найти дельту в матричном уравненииПриводим матричное уравнение к упрощённому виду

Видео:§28 Матричные уравненияСкачать

§28 Матричные уравнения

Шаг 2. Вводим единичную матрицу

В линейной алгебре есть два вспомогательных понятия: обратная матрица и единичная матрица. Единичная матрица состоит из нулей, а по диагонали у неё единицы. Обратная матрица — это такая, которая при умножении на исходную даёт единичную матрицу.

Можно представить, что есть число 100 — это «сто в первой степени», 100 1

И есть число 0,01 — это «сто в минус первой степени», 100 -1

При перемножении этих двух чисел получится единица:
100 1 × 100 -1 = 100 × 0,01 = 1.

Вот такое, только в мире матриц.

Зная свойства единичных и обратных матриц, делаем алгебраическое колдунство. Умножаем обе известные матрицы на обратную матрицу А -1 . Неизвестную матрицу Х оставляем без изменений и переписываем уравнение:

А -1 × А × Х = А -1 × В

Добавляем единичную матрицу и упрощаем запись:

А -1 × А = E — единичная матрица

E × Х = А -1 × В — единичная матрица, умноженная на исходную матрицу, даёт исходную матрицу. Единичную матрицу убираем

Х = А -1 × В — новая запись уравнения

После введения единичной матрицы мы нашли способ выражения неизвестной матрицы X через известные матрицы A и B.

💡 Смотрите, что произошло: раньше нам нужно было найти неизвестную матрицу. А теперь мы точно знаем, как её найти: нужно рассчитать обратную матрицу A -1 и умножить её на известную матрицу B. И то и другое — замороченные процедуры, но с точки зрения арифметики — просто.

Видео:Матричное уравнениеСкачать

Матричное уравнение

Шаг 3. Находим обратную матрицу

Вспоминаем формулу и порядок расчёта обратной матрицы:

  1. Делим единицу на определитель матрицы A.
  2. Считаем транспонированную матрицу алгебраических дополнений.
  3. Перемножаем значения и получаем нужную матрицу.

Собираем формулу и получаем обратную матрицу. Для удобства умышленно оставляем перед матрицей дробное число, чтобы было проще считать.

Как найти дельту в матричном уравненииТретье действие: получаем обратную матрицу

Видео:Обратная матрицаСкачать

Обратная матрица

Шаг 4. Вычисляем неизвестную матрицу

Нам остаётся посчитать матрицу X: умножаем обратную матрицу А -1 на матрицу B. Дробь держим за скобками и вносим в матрицу только при условии, что элементы новой матрицы будут кратны десяти — их можно умножить на дробь и получить целое число. Если кратных элементов не будет — дробь оставим за скобками.

Как найти дельту в матричном уравненииРешаем матричное уравнение и находим неизвестную матрицу X. Мы получили кратные числа и внесли дробь в матрицу

Видео:Лекция 8. Решение матричных уравненийСкачать

Лекция 8. Решение матричных уравнений

Шаг 5. Проверяем уравнение

Мы решили матричное уравнение и получили красивый ответ с целыми числами. Выглядит правильно, но в случае с матрицами этого недостаточно. Чтобы проверить ответ, нам нужно вернуться к условию и умножить исходную матрицу A на матрицу X. В результате должна появиться матрица B. Если расчёты совпадут — мы всё сделали правильно. Если будут отличия — придётся решать заново.

👉 Часто начинающие математики пренебрегают финальной проверкой и считают её лишней тратой времени. Сегодня мы разобрали простое уравнение с двумя квадратными матрицами с четырьмя элементами в каждой. Когда элементов будет больше, в них легко запутаться и допустить ошибку.

Как найти дельту в матричном уравненииПроверяем ответ и получаем матрицу B — наши расчёты верны

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Ну и что

Алгоритм решения матричных уравнений несложный, если знать отдельные его компоненты. Дальше на основе этих компонентов математики переходят в более сложные пространства: работают с многомерными матрицами, решают более сложные уравнения, постепенно выходят на всё более и более абстрактные уровни. И дальше, в конце пути, появляется датасет из миллионов котиков. Этот датасет раскладывается на пиксели, каждый пиксель оцифровывается, цифры подставляются в матрицы, и уже огромный алгоритм в автоматическом режиме генерирует изображение нейрокотика:

Видео:Матричные уравнения Полный разбор трех типов матричных уравненийСкачать

Матричные уравнения Полный разбор трех типов матричных уравнений

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Видео:§29 Решение матричного уравненияСкачать

§29 Решение матричного уравнения

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

🔍 Видео

2 13 Решение матричного уравнения AXB=CСкачать

2 13 Решение матричного уравнения AXB=C

Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Как вычислить определитель матрицы четвертого порядка | Высшая математикаСкачать

Как вычислить определитель матрицы четвертого порядка | Высшая математика

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

5 способов вычисления определителя ★ Какой способ лучше?Скачать

5 способов вычисления определителя ★ Какой способ лучше?

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.
Поделиться или сохранить к себе: