Как написать уравнение касательной параллельной оси ох

Касательная к графику функции, как составить уравнение, свойства, угловой коэффициент касательной проведенной к графику функции, формула, примеры решения

На экзаменах по дисциплинам с физико-математическим уклоном или при расчетах встречается тип задач о касательной к графику функции.

Как написать уравнение касательной параллельной оси ох

Однако следует разобраться в основных терминах и соотношениях.

Специалисты рекомендуют пользоваться специальным алгоритмом, позволяющим правильно находить точку касания прямой с какой-либо фигурой.

  • Общие сведения
    • Определения и понятия
    • Геометрический смысл
  • Касательные к фигурам и графикам
    • Одна и несколько окружностей
    • Эллипс, гипербола и парабола
  • Примеры решения
    • Рекомендации специалистов
    • Упражнения и ход вычислений

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Общие сведения

Касательной называется прямая, имеющая с фигурой или графиком заданной функции одну общую точку. Однако иногда она проходит через 2 точки. В этом случае ее называют секущей. Прямая задается следующим уравнением: y = kx + b. Значение «k» — это угловой коэффициент.

Для решения задач следует разобрать основные понятия, определения, формулы и свойства касательной.

Кроме того, очень важно понять ее геометрический смысл, поскольку без него будет сложно разобраться в более сложных дисциплинах с физико-математическим уклоном.

Определения и понятия

У касательной есть определенный параметр — угол наклона (а).

Как написать уравнение касательной параллельной оси ох

Его необходимо отсчитывать от оси абсцисс (только положительное направление) к прямой, заданной графиком y = kx + b.

От него зависит ее расположение.

Коэффициент «к» равен значению тангенса угла наклона, т. е. tg(a).

Математики сделали некоторые выводы, которые основываются на значении углового коэффициента:

В первом, втором и третьем случаях коэффициент является положительным, а в последнем — отрицательным. Эти факты следует учитывать при решении задач. Касательная прямая может являться и секущей, т. е. соприкасаться с графиком функции сразу в двух и более точках. Следует отметить, что при параллельности прямой оси ОХ (y = b), она может пересекать функцию бесконечное число раз.

Существует еще одно определение: касательной к функции вида y = f(x) в точке (х0, f(x0)) является прямая, которая проходит через эту точку с тем условием, что отрезок имеет множество значений, близких к ней (х -> x0).

Геометрический смысл

Пусть дана некоторая функция y = f(x) и секущая АВ (рис. 1). Координаты последней в точках А и В следующие: А(х0;f(x0)) и В(х0+zx;f(x0+zx)). Величина «zx» — приращение аргумента по х, которое показано стрелками. Если подставить координаты в функцию, то она имеет такой вид: zy = zf(x) = f(x0+zx) — f(zx).

Как написать уравнение касательной параллельной оси ох

Рисунок 1. Геометрический смысл.

Соотношение, которое было получено выше, называется производной. Если к графику в точке проведена секущая или касательная, то тангенс угла будет равен самой производной заданной функции в точке с координатой х0.

Из этого определения можно сделать вывод о существовании производной. Если значение последней равно 0, то, следовательно, не существует общих точек с заданной фигурой.

Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Касательные к фигурам и графикам

При решении задач следует обратить внимание на частные случаи. Нужно произвести расчеты уравнения прямой или найти точки соприкосновения с окружностью, эллипсом, гиперболой или параболой. Очень распространенная задача встречается также в механике о ременной передаче.

Как написать уравнение касательной параллельной оси ох

Частные случаи позволят найти оптимальное решение и метод расчета, поскольку экономия времени является важным элементом при научных исследованиях, написании контрольных работ и сдаче экзаменов. Важный этап — идентификация типа задачи. Касательная к вышеперечисленным фигурам — основной тип заданий, но существуют и более сложные функции.

Например, сложно составить уравнение прямой, которая имеет точки касания с какой-либо сложной функцией.

В некоторых случаях необходимо перед выполнением расчетов ее упростить, т. е. привести подобные слагаемые, раскрыть скобки или воспользоваться другими приемами для упрощения выражения.

Одна и несколько окружностей

Радиус, который проводится через точку касания, составляет с касательной прямой угол (перпендикулярен). Перпендикуляр к касательной, проходящий через точку касания, является радиусом или диаметром заданного круга. Из этого следует, что радиус является нормалью по отношению к прямой. Секущая — прямая, которая проходит через график или фигуру, но имеет от двух и более точек пересечения.

Формула окружности с центром в точке О (xc;yc) и радиусом R имеет следующий вид: sqr(х-хc) + sqr(y-yc) = R^2.

Как написать уравнение касательной параллельной оси ох

Для решения следует выразить значение у, но при этом нужно рассматривать 2 случая:

  • y = sqrt[R^2 — (х-хc)^2] + yц.
  • y = -sqrt[R^2 — (х-хc)^2] + yц.

    Две функции являются полукругами и вместе образуют окружность. Чтобы составить график круга в точке (х0;у0), нужно уравнение в этой точке. В точках с координатами (хц;yц+R) и (хц;yц-R) уравнения касательных к окружности задаются следующими уравнениями: y = yц + R и y = yц — R. Если взять точки (хц+R;yц) и (хц-R;yц), они будут иметь такую форму: x = xц + R и x = xц — R.

    В случае для двух окружностей всего можно провести до 4 касательных (2 внешних и 2 внутренних). Это зависит от случая расположения фигур. Точкой пересечения внешних считается внешняя гомотетия (подобие), а внутренних — в центре внутреннего подобия. Внешними называются прямые, которые касаются внешних точек круга. Если касательные являются внутренними, то они пересекают линию, соединяющую центры окружностей.

    Следует отметить, что внешний и внутренний центры гомотетии лежат на некоторой прямой. Она проходит через центры заданных окружностей. Это был рассмотрен случай, когда одна окружность меньше другой.

    Однако при равенстве их диаметров появляются некоторые свойства: внешние касательные параллельны и внешнего центра гомотетии не существует.

    Основные соотношения можно вывести, используя уравнение прямой (касательной) и расстояние от точки до прямой. Пусть окружности с радиусами R1 и R2 имеют следующие координаты центров: с1(х1;у1) и с2(х2;у2). Уравнение прямой записывается таким образом: ах + by + c = 0. Расстояния до прямой от точек с1 и с2 вычисляются таким образом: ах1 + by1 + c = R1 и ах2 + by2 + c = R2. Формула находится с помощью вычитания первого уравнения из второго: а(х2 — х1) + b(y2 — у1) = R2 — R1. Следовательно, расстояние вычисляется по следующей формуле: d = sqrt[(х2 — х1)^2 + (y2 — у1)^2].

    Эллипс, гипербола и парабола

    Пусть задан эллипс с полуосями a и b.

    Как написать уравнение касательной параллельной оси ох

    Его центром является точка с координатами (xц;уц). Уравнение, описывающее фигуру имеет такой вид: [(х — хц)^2 / a^2] + [(y — yц)^2 / b^2] = 1. Необходимо выразить переменную y. Функция будет состоять из двух полуэллипсов: y = (b/a) * sqrt[a^2 — (x-xц)^2] + yц и y = -(b/a) * sqrt[a^2 — (x-xц)^2] + yц. Касательные к геометрической фигуре могут быть параллельными оси ОХ или ОУ.

    В некоторых случаях график задан уравнениями кривых, к которым относятся гипербола и парабола. Пусть первая имеет координаты центра (xц;уц) с вершинами (xц+а;уц) и (xц-a;уц). Ее уравнение принимает такой вид: [(х — хц)^2 / a^2] — [(y — yц)^2 / b^2] = 1. Если же ее вершины имеют такие координаты (xц;уц+b) и (xц;уц-b), то она описывается следующим равенством [(х — хц)^2 / a^2] — [(y — yц)^2 / b^2] = -1. В последнем равенстве меняется знак. При решении нужно разбить на две объединенные функции:

  • y = (b/a) * sqrt[(x-xц)^2 — a^2] + yц и y = -(b/a) * sqrt[(x-xц)^2 — a^2] + yц.
  • y = (b/a) * sqrt[(x-xц)^2 + a^2] + yц и y = -(b/a) * sqrt[(x-xц)^2 + a^2] + yц.

    В первом случае прямые параллельны оси ординат, а во втором — абсцисс. Чтобы написать уравнение прямой, нужно определить, к какой из функций принадлежит точка, выполнив подстановку в текущие равенства. После этого их следует проверить на тождественность.

    Как написать уравнение касательной параллельной оси ох

    Чтобы записать уравнение прямой-касательной к параболе y = ax^2 + bx + c в точке с координатами (x0;y(x0)), нужно привести равенство к следующему виду: y = y'(x0) * (x-x0) + y(x0). Из формулы можно сделать вывод о том, что прямая параллельна оси абсцисс. Параболу нужно рассматривать, как объединение двух функций (x = ay^2 + by + c). Рекомендуется решить его относительно y. Дискриминант вычисляется таким образом: D = b^2 — 4a(c — x).

    В зависимости от его значения находятся корни:

  • D>0: y = [-b + sqrt(D)] / 2a и y = [-b — sqrt(D)] / 2a.
  • D=0: y = -b / 2a.
  • D

    Как написать уравнение касательной параллельной оси ох

    Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта «Образование».

    Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

    Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

    Уравнение касательной к графику функции

    п.1. Уравнение касательной

    Рассмотрим кривую (y=f(x)).
    Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
    Как написать уравнение касательной параллельной оси ох
    Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
    Для (A(x_0,y_0), B(x,y)) получаем: begin (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end

    Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace_x+underbrace_ $$

    п.2. Алгоритм построения касательной

    На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
    Шаг 1. Найти значение функции в точке касания (f(x_0))
    Шаг 2. Найти общее уравнение производной (f’ (x))
    Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
    Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
    На выходе: уравнение касательной в виде (y=kx+b)

    Как написать уравнение касательной параллельной оси охПусть (f(x)=x^2+3).
    Найдем касательную к этой параболе в точке (x_0=1).

    (f(x_0)=1^2+3=4 )
    (f'(x)=2x )
    (f'(x_0)=2cdot 1=2)
    Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

    п.3. Вертикальная касательная

    Не путайте вертикальные касательные с вертикальными асимптотами.
    Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
    А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

    Вертикальные касательные характерны для радикалов вида (y=sqrt[n]).

    Как написать уравнение касательной параллельной оси охПусть (f(x)=sqrt[5]+1).
    Найдем касательную к этой кривой в точке (x_0=1).

    (f(x_0)=sqrt[5]+1=1)
    (f'(x)=frac15(x-1)^+0=frac15(x-1)^=frac<5(x-1)^> )
    (f'(x_0)=frac<5(1-1)^>=frac10=+infty)
    В точке (x_0) проходит вертикальная касательная.
    Её уравнение: (x=1)
    Ответ: (y=2x+2)

    п.4. Примеры

    Пример 1. Для функции (f(x)=2x^2+4x)
    a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

    Как написать уравнение касательной параллельной оси охНаходим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin x=0\ x=-2 end right. $$ Две точки на оси: (0;0) и (-2;0).
    Касательная в точке (x_0=0): begin f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end Касательная в точке (x_0=-2): begin f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end

    б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

    Как написать уравнение касательной параллельной оси охОбщее уравнение касательной: (f'(x)=4x+4)
    По условию (f'(x_0)=tgalpha=tg45^circ=1)
    Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac end Уравнение касательной: begin y=1cdotleft(x+frac34right)-frac=x-frac98 end

    в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

    Как написать уравнение касательной параллельной оси охНайдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
    Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end Точка касания (x_0=-frac32) begin f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end Уравнение касательной: begin y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end Или, в каноническом виде: begin 2x+y+frac92=0 end

    г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

    Как написать уравнение касательной параллельной оси охУ горизонтальной прямой (k=0).
    Получаем уравнение: (f'(x_0)=0). begin 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end Точка касания (x_0=-1) begin f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end Уравнение касательной: begin y=0cdot(x+1)-2=-2 end

    Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

    Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

    Угловой коэффициент данной прямой (k_1=11).
    Угловой коэффициент перпендикулярной прямой (k_2=-frac=-frac) begin f'(x)=left(fracright)’-x’=frac-1=frac=\ =frac=- frac end В точке касания: begin f'(x_0)=k_2Rightarrow=-frac=-fracRightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin x=-14\ x=8 end right. end Как написать уравнение касательной параллельной оси ох
    Уравнение касательной при (x_0=-14) begin f(x_0)=frac+14=frac+14=-18+14=-4\ y=-frac(x+14)-4=-frac end Уравнение касательной при (x_0=8) begin f(x_0)=frac-8=frac-8=-2\ y=-frac(x-8)-2=-frac end
    Ответ: точка касания (-14;-4), уравнение (y=-frac)
    и точка касания (8;-2), уравнение (-frac)

    Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

    Найдем производные функций: begin f_1′(x)=2x-5, f_2′(x)=2x+1 end Пусть a – абсцисса точки касания для первой параболы, b — для второй.
    Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin begin 2a-5=2b+1\ 6-a^2=1-b^2 end Rightarrow begin 2(a-b)=6\ a^2-b^2=5 end Rightarrow begin a-b=3\ (a-b)(a+b)=5 end Rightarrow begin a-b=3\ a+b=frac53 end Rightarrow \ Rightarrow begin 2a=3+frac53\ 2b=frac53-3 end Rightarrow begin a=frac73\ b=-frac23 end end Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$ Как написать уравнение касательной параллельной оси ох
    Точки касания: begin a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac-frac+6=frac=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac=frac79 end
    Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

    Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

    Решим уравнение: (x^4+3x^2+2x=2x-1) begin x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac<-3pmsqrt> end Оба корня отрицательные, а квадрат не может быть отрицательным числом.
    Значит, (xinvarnothing) — решений нет, кривая и прямая не пересекаются.
    Что и требовалось доказать.

    Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
    Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin x=0\ 2x^2+3=0 end right. Rightarrow left[ begin x=0\ x^2=-frac32 end right. Rightarrow left[ begin x=0\ xinvarnothing end right. Rightarrow x=0 end Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
    Уравнение касательной: (y=2(x-0)+0=2x)

    Как написать уравнение касательной параллельной оси охИщем расстояние между двумя параллельными прямыми:
    (y=2x) и (y=2x-1).
    Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

    Уравнение перпендикуляра: (y=-frac x2).
    Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac=-0,2 end Точка пересечения A(0,4;-0,2).
    Находим расстояние (OA=sqrt=0,2sqrt=frac<sqrt>)
    Ответ: (frac<sqrt>)

    Видео:Как написать уравнения касательной и нормали | МатематикаСкачать

    Как написать уравнения касательной и нормали | Математика

    Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной

    Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

    Видео:Производная: касательная параллельная к заданной.Скачать

    Производная: касательная параллельная к заданной.

    Определения и понятия

    Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

    Как написать уравнение касательной параллельной оси ох

    На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

    Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

    Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

    • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
    • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 α π 2 или 0 ° α 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
    • Если α = π 2 , тогда расположение прямой перпендикулярно о х . Равенство задается при помощи равенства x = c со значением с , являющимся действительным числом.
    • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 α π или 90 ° α 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.

    Определение 3

    Секущей называют прямую, которая проходит через 2 точки функции f ( x ) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

    Как написать уравнение касательной параллельной оси ох

    По рисунку видно, что А В является секущей, а f ( x ) – черная кривая, α — красная дуга, означающая угол наклона секущей.

    Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

    Получаем формулу для нахождения секущей вида:

    k = t g α = B C A C = f ( x B ) — f x A x B — x A , где абсциссами точек А и В являются значения x A , x B , а f ( x A ) , f ( x B ) — это значения функции в этих точках.

    Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f ( x B ) — f ( x A ) x B — x A или k = f ( x A ) — f ( x B ) x A — x B , причем уравнение необходимо записать как y = f ( x B ) — f ( x A ) x B — x A · x — x A + f ( x A ) или
    y = f ( x A ) — f ( x B ) x A — x B · x — x B + f ( x B ) .

    Секущая делит график визуально на 3 части: слева от точки А , от А до В , справа от В . На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

    Как написать уравнение касательной параллельной оси ох

    По определению видно, что прямая и ее секущая в данном случае совпадают.

    Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

    Касательная к графику функции f ( x ) в точке x 0 ; f ( x 0 ) называется прямая, проходящая через заданную точку x 0 ; f ( x 0 ) , с наличием отрезка, который имеет множество значений х , близких к x 0 .

    Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами ( 1 ; 2 ) . Для наглядности, необходимо рассмотреть графики с приближенными к ( 1 ; 2 ) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

    Как написать уравнение касательной параллельной оси ох

    Очевидно, что y = 2 x сливается с прямой у = х + 1 .

    Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А . Для наглядности приведем рисунок.

    Как написать уравнение касательной параллельной оси ох

    Секущая А В , обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

    Касательной к графику функции y = f ( x ) в точке А считается предельное положение секущей А В при В стремящейся к А , то есть B → A .

    Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

    Видео:Уравнение касательнойСкачать

    Уравнение касательной

    Геометрический смысл производной функции в точке

    Перейдем к рассмотрению секущей А В для функции f ( x ) , где А и В с координатами x 0 , f ( x 0 ) и x 0 + ∆ x , f ( x 0 + ∆ x ) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f ( x ) = f ( x 0 + ∆ x ) — f ( ∆ x ) . Для наглядности приведем в пример рисунок.

    Как написать уравнение касательной параллельной оси ох

    Рассмотрим полученный прямоугольный треугольник А В С . Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f ( x ) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x .

    Отсюда следует, что f ‘ ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

    То есть получаем, что f ’ ( x ) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 ( x 0 ) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f ‘ ( x 0 ) .

    Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

    Видео:Уравнение касательной, параллельной заданной прямой.Скачать

    Уравнение касательной, параллельной заданной прямой.

    Уравнение касательной прямой

    Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

    Уравнение касательной к графику функции y = f ( x ) в точке x 0 , f 0 ( x 0 ) принимает вид y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) .

    Имеется в виду, что конечным значением производной f ‘ ( x 0 ) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f ‘ ( x ) = ∞ и lim x → x 0 — 0 f ‘ ( x ) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f ‘ ( x ) ≠ lim x → x 0 — 0 f ‘ ( x ) .

    Расположение касательной зависит от значения ее углового коэффициента k x = f ‘ ( x 0 ) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у — k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x 0 .

    Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 в точке с координатами ( 1 ; 3 ) с определением угла наклона.

    Решение

    По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, ( 1 ; 3 ) является точкой касания, тогда x 0 = — 1 , f ( x 0 ) = — 3 .

    Необходимо найти производную в точке со значением — 1 . Получаем, что

    y ‘ = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 ‘ = = e x + 1 ‘ + x 3 3 ‘ — 6 — 3 3 x ‘ — 17 — 3 3 ‘ = e x + 1 + x 2 — 6 — 3 3 y ‘ ( x 0 ) = y ‘ ( — 1 ) = e — 1 + 1 + — 1 2 — 6 — 3 3 = 3 3

    Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

    Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3

    Отсюда следует, что α x = a r c t g 3 3 = π 6

    Ответ: уравнение касательной приобретает вид

    y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) y = 3 3 ( x + 1 ) — 3 y = 3 3 x — 9 — 3 3

    Для наглядности приведем пример в графической иллюстрации.

    Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

    Как написать уравнение касательной параллельной оси ох

    Выяснить наличие существования касательной к графику заданной функции
    y = 3 · x — 1 5 + 1 в точке с координатами ( 1 ; 1 ) . Составить уравнение и определить угол наклона.

    Решение

    По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

    Перейдем к нахождению производной

    y ‘ = 3 · x — 1 5 + 1 ‘ = 3 · 1 5 · ( x — 1 ) 1 5 — 1 = 3 5 · 1 ( x — 1 ) 4 5

    Если x 0 = 1 , тогда f ’ ( x ) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( + 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 — 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( — 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке ( 1 ; 1 ) .

    Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

    Для наглядности изобразим графически.

    Как написать уравнение касательной параллельной оси ох

    Найти точки графика функции y = 1 15 x + 2 3 — 4 5 x 2 — 16 5 x — 26 5 + 3 x + 2 , где

    1. Касательная не существует;
    2. Касательная располагается параллельно о х ;
    3. Касательная параллельна прямой y = 8 5 x + 4 .

    Решение

    Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ — ∞ ; 2 и [ — 2 ; + ∞ ) . Получаем, что

    y = — 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 , x ∈ [ — 2 ; + ∞ )

    Необходимо продифференцировать функцию. Имеем, что

    y ‘ = — 1 15 x 3 + 18 x 2 + 105 x + 176 ‘ , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 ‘ , x ∈ [ — 2 ; + ∞ ) ⇔ y ‘ = — 1 5 ( x 2 + 12 x + 35 ) , x ∈ — ∞ ; — 2 1 5 x 2 — 4 x + 3 , x ∈ [ — 2 ; + ∞ )

    Когда х = — 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

    lim x → — 2 — 0 y ‘ ( x ) = lim x → — 2 — 0 — 1 5 ( x 2 + 12 x + 35 = — 1 5 ( — 2 ) 2 + 12 ( — 2 ) + 35 = — 3 lim x → — 2 + 0 y ‘ ( x ) = lim x → — 2 + 0 1 5 ( x 2 — 4 x + 3 ) = 1 5 — 2 2 — 4 — 2 + 3 = 3

    Вычисляем значение функции в точке х = — 2 , где получаем, что

    1. y ( — 2 ) = 1 15 — 2 + 2 3 — 4 5 ( — 2 ) 2 — 16 5 ( — 2 ) — 26 5 + 3 — 2 + 2 = — 2 , то есть касательная в точке ( — 2 ; — 2 ) не будет существовать.
    2. Касательная параллельна о х , когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f ‘ ( x 0 ) . То есть необходимо найти значения таких х , когда производная функции обращает ее в ноль. То есть значения f ’ ( x ) и будут являться точками касания, где касательная является параллельной о х .

    Когда x ∈ — ∞ ; — 2 , тогда — 1 5 ( x 2 + 12 x + 35 ) = 0 , а при x ∈ ( — 2 ; + ∞ ) получаем 1 5 ( x 2 — 4 x + 3 ) = 0 .

    — 1 5 ( x 2 + 12 x + 35 ) = 0 D = 12 2 — 4 · 35 = 144 — 140 = 4 x 1 = — 12 + 4 2 = — 5 ∈ — ∞ ; — 2 x 2 = — 12 — 4 2 = — 7 ∈ — ∞ ; — 2 1 5 ( x 2 — 4 x + 3 ) = 0 D = 4 2 — 4 · 3 = 4 x 3 = 4 — 4 2 = 1 ∈ — 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ — 2 ; + ∞

    Вычисляем соответствующие значения функции

    y 1 = y — 5 = 1 15 — 5 + 2 3 — 4 5 — 5 2 — 16 5 — 5 — 26 5 + 3 — 5 + 2 = 8 5 y 2 = y ( — 7 ) = 1 15 — 7 + 2 3 — 4 5 ( — 7 ) 2 — 16 5 — 7 — 26 5 + 3 — 7 + 2 = 4 3 y 3 = y ( 1 ) = 1 15 1 + 2 3 — 4 5 · 1 2 — 16 5 · 1 — 26 5 + 3 1 + 2 = 8 5 y 4 = y ( 3 ) = 1 15 3 + 2 3 — 4 5 · 3 2 — 16 5 · 3 — 26 5 + 3 3 + 2 = 4 3

    Отсюда — 5 ; 8 5 , — 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

    Рассмотрим графическое изображение решения.

    Как написать уравнение касательной параллельной оси ох

    Черная линия – график функции, красные точки – точки касания.

    1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y ‘ ( x ) = 8 5 . Тогда, если x ∈ — ∞ ; — 2 , получаем, что — 1 5 ( x 2 + 12 x + 35 ) = 8 5 , а если x ∈ ( — 2 ; + ∞ ) , тогда 1 5 ( x 2 — 4 x + 3 ) = 8 5 .

    Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

    — 1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 — 4 · 43 = — 28 0

    Другое уравнение имеет два действительных корня, тогда

    1 5 ( x 2 — 4 x + 3 ) = 8 5 x 2 — 4 x — 5 = 0 D = 4 2 — 4 · ( — 5 ) = 36 x 1 = 4 — 36 2 = — 1 ∈ — 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ — 2 ; + ∞

    Перейдем к нахождению значений функции. Получаем, что

    y 1 = y ( — 1 ) = 1 15 — 1 + 2 3 — 4 5 ( — 1 ) 2 — 16 5 ( — 1 ) — 26 5 + 3 — 1 + 2 = 4 15 y 2 = y ( 5 ) = 1 15 5 + 2 3 — 4 5 · 5 2 — 16 5 · 5 — 26 5 + 3 5 + 2 = 8 3

    Точки со значениями — 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

    Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках — 1 ; 4 15 , 5 ; 8 3 .

    Как написать уравнение касательной параллельной оси ох

    Возможно существование бесконечного количества касательных для заданных функций.

    Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x — π 4 — 1 3 , которые располагаются перпендикулярно прямой y = — 2 x + 1 2 .

    Решение

    Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется — 1 , то есть записывается как k x · k ⊥ = — 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = — 2 , тогда k x = — 1 k ⊥ = — 1 — 2 = 1 2 .

    Теперь необходимо найти координаты точек касания. Нужно найти х , после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
    x 0 получаем, что k x = y ‘ ( x 0 ) . Из данного равенства найдем значения х для точек касания.

    y ‘ ( x 0 ) = 3 cos 3 2 x 0 — π 4 — 1 3 ‘ = 3 · — sin 3 2 x 0 — π 4 · 3 2 x 0 — π 4 ‘ = = — 3 · sin 3 2 x 0 — π 4 · 3 2 = — 9 2 · sin 3 2 x 0 — π 4 ⇒ k x = y ‘ ( x 0 ) ⇔ — 9 2 · sin 3 2 x 0 — π 4 = 1 2 ⇒ sin 3 2 x 0 — π 4 = — 1 9

    Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

    3 2 x 0 — π 4 = a r c sin — 1 9 + 2 πk или 3 2 x 0 — π 4 = π — a r c sin — 1 9 + 2 πk

    3 2 x 0 — π 4 = — a r c sin 1 9 + 2 πk или 3 2 x 0 — π 4 = π + a r c sin 1 9 + 2 πk

    x 0 = 2 3 π 4 — a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

    Z — множество целых чисел.

    Найдены х точек касания. Теперь необходимо перейти к поиску значений у :

    y 0 = 3 cos 3 2 x 0 — π 4 — 1 3

    y 0 = 3 · 1 — sin 2 3 2 x 0 — π 4 — 1 3 или y 0 = 3 · — 1 — sin 2 3 2 x 0 — π 4 — 1 3

    y 0 = 3 · 1 — — 1 9 2 — 1 3 или y 0 = 3 · — 1 — — 1 9 2 — 1 3

    y 0 = 4 5 — 1 3 или y 0 = — 4 5 + 1 3

    Отсюда получаем, что 2 3 π 4 — a r c sin 1 9 + 2 πk ; 4 5 — 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; — 4 5 + 1 3 являются точками касания.

    Ответ: необходимы уравнения запишутся как

    y = 1 2 x — 2 3 π 4 — a r c sin 1 9 + 2 πk + 4 5 — 1 3 , y = 1 2 x — 2 3 5 π 4 + a r c sin 1 9 + 2 πk — 4 5 + 1 3 , k ∈ Z

    Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

    Рисунок показывает, что расположение функции идет на промежутке [ — 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = — 2 x + 1 2 . Красные точки – это точки касания.

    Как написать уравнение касательной параллельной оси ох

    Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

    Записать уравнение прямой параллельной или перпендикулярной данной.

    Касательная к окружности, эллипсу, гиперболе, параболе

    Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

    Касательная к окружности

    Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x — x c e n t e r 2 + y — y c e n t e r 2 = R 2 .

    Данное равенство может быть записано как объединение двух функций:

    y = R 2 — x — x c e n t e r 2 + y c e n t e r y = — R 2 — x — x c e n t e r 2 + y c e n t e r

    Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

    Как написать уравнение касательной параллельной оси ох

    Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 — x — x c e n t e r 2 + y c e n t e r или y = — R 2 — x — x c e n t e r 2 + y c e n t e r в указанной точке.

    Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r — R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r — R , а в точках x c e n t e r + R ; y c e n t e r и
    x c e n t e r — R ; y c e n t e r будут являться параллельными о у , тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r — R .

    Как написать уравнение касательной параллельной оси ох

    Касательная к эллипсу

    Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x — x c e n t e r 2 a 2 + y — y c e n t e r 2 b 2 = 1 .

    Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

    y = b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r y = — b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r

    Как написать уравнение касательной параллельной оси ох

    Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у . Ниже для наглядности рассмотрим рисунок.

    Как написать уравнение касательной параллельной оси ох

    Написать уравнение касательной к эллипсу x — 3 2 4 + y — 5 2 25 = 1 в точках со значениями x равного х = 2 .

    Решение

    Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

    x — 3 2 4 x = 2 + y — 5 2 25 = 1 1 4 + y — 5 2 25 = 1 ⇒ y — 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

    Тогда 2 ; 5 3 2 + 5 и 2 ; — 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

    Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

    x — 3 2 4 + y — 5 2 25 = 1 y — 5 2 25 = 1 — x — 3 2 4 ( y — 5 ) 2 = 25 · 1 — x — 3 2 4 y — 5 = ± 5 · 1 — x — 3 2 4 y = 5 ± 5 2 4 — x — 3 2

    Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 — x — 3 2 , а нижний y = 5 — 5 2 4 — x — 3 2 .

    Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

    y ‘ = 5 + 5 2 4 — x — 3 2 ‘ = 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = — 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = — 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = 5 2 3 ( x — 2 ) + 5 3 2 + 5

    Получаем, что уравнение второй касательной со значением в точке
    2 ; — 5 3 2 + 5 принимает вид

    y ‘ = 5 — 5 2 4 — ( x — 3 ) 2 ‘ = — 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = — 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = — 5 2 3 ( x — 2 ) — 5 3 2 + 5

    Графически касательные обозначаются так:

    Как написать уравнение касательной параллельной оси ох

    Касательная к гиперболе

    Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r — α ; y c e n t e r , имеет место задание неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r — b , тогда задается при помощи неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = — 1 .

    Как написать уравнение касательной параллельной оси ох

    Гипербола может быть представлена в виде двух объединенных функций вида

    y = b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r или y = b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r

    Как написать уравнение касательной параллельной оси ох

    В первом случае имеем, что касательные параллельны о у , а во втором параллельны о х .

    Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

    Составить уравнение касательной к гиперболе x — 3 2 4 — y + 3 2 9 = 1 в точке 7 ; — 3 3 — 3 .

    Решение

    Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

    x — 3 2 4 — y + 3 2 9 = 1 ⇒ y + 3 2 9 = x — 3 2 4 — 1 ⇒ y + 3 2 = 9 · x — 3 2 4 — 1 ⇒ y + 3 = 3 2 · x — 3 2 — 4 и л и y + 3 = — 3 2 · x — 3 2 — 4 ⇒ y = 3 2 · x — 3 2 — 4 — 3 y = — 3 2 · x — 3 2 — 4 — 3

    Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; — 3 3 — 3 .

    Очевидно, что для проверки первой функции необходимо y ( 7 ) = 3 2 · ( 7 — 3 ) 2 — 4 — 3 = 3 3 — 3 ≠ — 3 3 — 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

    Для второй функции имеем, что y ( 7 ) = — 3 2 · ( 7 — 3 ) 2 — 4 — 3 = — 3 3 — 3 ≠ — 3 3 — 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

    y ‘ = — 3 2 · ( x — 3 ) 2 — 4 — 3 ‘ = — 3 2 · x — 3 ( x — 3 ) 2 — 4 ⇒ k x = y ‘ ( x 0 ) = — 3 2 · x 0 — 3 x 0 — 3 2 — 4 x 0 = 7 = — 3 2 · 7 — 3 7 — 3 2 — 4 = — 3

    Ответ: уравнение касательной можно представить как

    y = — 3 · x — 7 — 3 3 — 3 = — 3 · x + 4 3 — 3

    Наглядно изображается так:

    Как написать уравнение касательной параллельной оси ох

    Касательная к параболе

    Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y ( x 0 ) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y ‘ ( x 0 ) · x — x 0 + y ( x 0 ) . Такая касательная в вершине параллельна о х .

    Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у . Получаем, что

    x = a y 2 + b y + c ⇔ a y 2 + b y + c — x = 0 D = b 2 — 4 a ( c — x ) y = — b + b 2 — 4 a ( c — x ) 2 a y = — b — b 2 — 4 a ( c — x ) 2 a

    Графически изобразим как:

    Как написать уравнение касательной параллельной оси ох

    Для выяснения принадлежности точки x 0 , y ( x 0 ) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

    Написать уравнение касательной к графику x — 2 y 2 — 5 y + 3 , когда имеем угол наклона касательной 150 ° .

    Решение

    Начинаем решение с представления параболы в качестве двух функций. Получим, что

    — 2 y 2 — 5 y + 3 — x = 0 D = ( — 5 ) 2 — 4 · ( — 2 ) · ( 3 — x ) = 49 — 8 x y = 5 + 49 — 8 x — 4 y = 5 — 49 — 8 x — 4

    Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

    k x = y ‘ ( x 0 ) = t g α x = t g 150 ° = — 1 3

    Отсюда определим значение х для точек касания.

    Первая функция запишется как

    y ‘ = 5 + 49 — 8 x — 4 ‘ = 1 49 — 8 x ⇒ y ‘ ( x 0 ) = 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3

    Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

    Вторая функция запишется как

    y ‘ = 5 — 49 — 8 x — 4 ‘ = — 1 49 — 8 x ⇒ y ‘ ( x 0 ) = — 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3 x 0 = 23 4 ⇒ y ( x 0 ) = 5 — 49 — 8 · 23 4 — 4 = — 5 + 3 4

    Имеем, что точки касания — 23 4 ; — 5 + 3 4 .

    Ответ: уравнение касательной принимает вид

  • 🎦 Видео

    Геометрический смысл производной | КасательнаяСкачать

    Геометрический смысл производной | Касательная

    Уравнение касательной в точке. Практическая часть. 2ч. 10 класс.Скачать

    Уравнение касательной в точке. Практическая часть. 2ч. 10 класс.

    Если касательная к графику функции параллельна оси ОХ, то ее уравнениеСкачать

    Если касательная к графику функции параллельна оси ОХ, то ее уравнение

    Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать

    Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.

    Касательная к графику функции в точке. 10 класс.Скачать

    Касательная к графику функции в точке. 10 класс.

    Геометрический смысл производной. Уравнение касательнойСкачать

    Геометрический смысл производной. Уравнение касательной

    Уравнение касательной к графику функции | Алгебра 10 класс #45 | ИнфоурокСкачать

    Уравнение касательной к графику функции | Алгебра 10 класс #45 | Инфоурок

    3. Геометрический смысл производной. Уравнение касательной и нормали.Скачать

    3. Геометрический смысл производной. Уравнение касательной и нормали.

    Уравнение касательнойСкачать

    Уравнение касательной

    ЕГЭ Задание 7 Уравнение касательнойСкачать

    ЕГЭ Задание 7  Уравнение касательной

    Задание 7 ЕГЭ по математикеСкачать

    Задание 7 ЕГЭ по математике

    Уравнение параллельной прямойСкачать

    Уравнение параллельной прямой
    Поделиться или сохранить к себе: