Как находить общий знаменатель дробно рациональных уравнений

Дробно-рациональные уравнения. Алгоритм решения
Содержание
  1. Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac ) (=0), где (P(x)) и (Q(x)) — выражения с иксом (или другой переменной). Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе. Пример не дробно-рациональных уравнений: Как решаются дробно-рациональные уравнения? Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным. Алгоритм решения дробно-рационального уравнения: Выпишите и «решите» ОДЗ. Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут. Запишите уравнение, не раскрывая скобок. Решите полученное уравнение. Проверьте найденные корни с ОДЗ. Запишите в ответ корни, которые прошли проверку в п.7. Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам. Пример. Решите дробно-рациональное уравнение (frac — frac=frac) Сначала записываем и «решаем» ОДЗ. По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)). Сокращаем то, что можно и записываем получившееся уравнение. Приводим подобные слагаемые Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень — посторонний. В ответ записываем только второй. Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac) (=0) Записываем и «решаем» ОДЗ. Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)). Благо (x_1) и (x_2) мы уже нашли. Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение. Приводим подобные слагаемые Находим корни уравнения Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. Дробно-рациональные уравнения Что такое дробно-рациональные уравнения Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как: при P ( x ) и Q ( x ) в виде выражений, содержащих переменную. Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем. 9 x 2 — 1 3 x = 0 1 2 x + x x + 1 = 1 2 6 x + 1 = x 2 — 5 x x + 1 Уравнения, которые не являются дробно-рациональными: Как решаются дробно-рациональные уравнения В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения. Алгоритм действий при стандартном способе решения: Выписать и определить ОДЗ. Найти общий знаменатель для дробей. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели. Записать уравнение со скобками. Раскрыть скобки для приведения подобных слагаемых. Найти корни полученного уравнения. Выполним проверку корней в соответствии с ОДЗ. Записать ответ. Пример 1 Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить: x x — 2 — 7 x + 2 = 8 x 2 — 4 Начать следует с области допустимых значений: x 2 — 4 ≠ 0 ⇔ x ≠ ± 2 Воспользуемся правилом сокращенного умножения: x 2 — 4 = ( x — 2 ) ( x + 2 ) В результате общим знаменателем дробей является: Выполним умножение каждого из членов выражения на общий знаменатель: x x — 2 — 7 x + 2 = 8 x 2 — 4 x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 ) После сокращения избавимся от скобок и приведем подобные слагаемые: x ( x + 2 ) — 7 ( x — 2 ) = 8 x 2 + 2 x — 7 x + 14 = 8 Осталось решить квадратное уравнение: Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать: Примеры задач с ответами для 9 класса Требуется решить дробно-рациональное уравнение: x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 Определим область допустимых значений: О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2 x 2 + 7 x + 10 ≠ 0 D = 49 — 4 · 10 = 9 x 1 ≠ — 7 + 3 2 = — 2 x 2 ≠ — 7 — 3 2 = — 5 Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой: a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение: x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Сократим дроби, избавимся от скобок, приведем подобные слагаемые: x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 — — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0 x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0 x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0 2 x 2 + 9 x — 5 = 0 Потребуется решить квадратное уравнение: 2 x 2 + 9 x — 5 = 0 Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень. Дано дробно-рациональное уравнение, корни которого требуется найти: 4 x — 2 — 3 x + 4 = 1 В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю: 4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0 4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0 4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0 x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0 Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему: — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0 Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ: ( x — 2 ) ( x + 4 ) ≠ 0 Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль: — x 2 — x + 30 = 0 _ _ _ · ( — 1 ) Получилось квадратное уравнение, которое можно решить: Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения. Нужно решить дробно-рациональное уравнение: x + 2 x 2 — 2 x — x x — 2 = 3 x На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю: x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0 x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0 x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0 — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0 Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений. — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 ) Корни квадратного уравнения: x 1 = — 4 ; x 2 = 2 Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень. Найти корни уравнения: x 2 — x — 6 x — 3 = x + 2 Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю: x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0 x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0 x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0 0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0 Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений: Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ. Ответ: х — любое число, за исключением 3. Требуется вычислить корни дробно-рационального уравнения: 5 x — 2 — 3 x + 2 = 20 x 2 — 4 На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю: 5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0 5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0 5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0 2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0 ( x — 2 ) ( x + 2 ) ≠ 0 Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение. Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни. Ответ: корни отсутствуют Нужно найти корни уравнения: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) Начнем с определения ОДЗ: — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0 При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 ) ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 ) ( x — 3 ) x + x = x + 5 Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме: x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0 Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета: x 1 · x 2 = — 10 x 1 + x 2 = 3 В этом случае подходящими являются числа: -2 и 5. Второе значение не соответствует области допустимых значений. Решение уравнений с дробями О чем эта статья: 5 класс, 6 класс, 7 класс Понятие дроби Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними. Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи: обыкновенный вид — ½ или a/b, десятичный вид — 0,5. Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление. Дроби бывают двух видов: Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв. Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57. Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5. Основные свойства дробей Дробь не имеет значения, если делитель равен нулю. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля. Дроби a/b и c/d называют равными, если a × d = b × c. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень. Понятие уравнения Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере: Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное. Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой. Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений. Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни. Решить уравнение значит найти все его корни или убедиться, что корней нет. Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них. Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

    Что поможет в решении: если а не равно нулю, то у уравнения единственный корень: х = −b : а; если а равно нулю, а b не равно нулю — у уравнения нет корней; если а и b равны нулю, то корень уравнения — любое число. Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. Понятие дробного уравнения Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так: Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе. Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры: На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное. Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение. Как решать уравнения с дробями 1. Метод пропорции Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает. Итак, у нас есть линейное уравнение с дробями: В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь. После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели. 2. Метод избавления от дробей Возьмем то же самое уравнение, но попробуем решить его по-другому. В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать: подобрать число, которое можно разделить на каждый из знаменателей без остатка; умножить на это число каждый член уравнения. Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля! Вот так просто мы получили тот же ответ, что и в прошлый раз. Что еще важно учитывать при решении если значение переменной обращает знаменатель в 0, значит это неверное значение; делить и умножать уравнение на 0 нельзя. Универсальный алгоритм решения Определить область допустимых значений. Найти общий знаменатель. Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут. Раскрыть скобки, если нужно и привести подобные слагаемые. Решить полученное уравнение. Сравнить полученные корни с областью допустимых значений. Записать ответ, который прошел проверку. Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах. Примеры решения дробных уравнений Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек. Пример 1. Решить дробное уравнение: 1/x + 2 = 5. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Решим обычное уравнение. Пример 2. Найти корень уравнения Область допустимых значений: х ≠ −2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2) Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Переведем новый множитель в числитель.. Сократим левую часть на (х+2), а правую на 2. Пример 3. Решить дробное уравнение: Найти общий знаменатель:
  2. 📽️ Видео
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось: Выполним возможные преобразования. Получилось квадратное уравнение: Решим полученное квадратное уравнение: Получили два возможных корня: Если x = −3, то знаменатель равен нулю: Если x = 3 — знаменатель тоже равен нулю. Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Как решаются дробно-рациональные уравнения?
  • Дробно-рациональные уравнения
  • Что такое дробно-рациональные уравнения
  • Как решаются дробно-рациональные уравнения
  • Примеры задач с ответами для 9 класса
  • Решение уравнений с дробями
  • Понятие дроби
  • Основные свойства дробей
  • Понятие уравнения
  • Понятие дробного уравнения
  • Как решать уравнения с дробями
  • 1. Метод пропорции
  • 2. Метод избавления от дробей
  • Что еще важно учитывать при решении
  • Универсальный алгоритм решения
  • Примеры решения дробных уравнений
  • Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac

    ) (=0), где (P(x)) и (Q(x)) — выражения с иксом (или другой переменной).

    Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.

    Пример не дробно-рациональных уравнений:

    Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    Как решаются дробно-рациональные уравнения?

    Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

    Алгоритм решения дробно-рационального уравнения:

    Выпишите и «решите» ОДЗ.

    Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

    Запишите уравнение, не раскрывая скобок.

    Решите полученное уравнение.

    Проверьте найденные корни с ОДЗ.

    Запишите в ответ корни, которые прошли проверку в п.7.

    Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

    Пример. Решите дробно-рациональное уравнение (frac — frac=frac)

    Сначала записываем и «решаем» ОДЗ.

    По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)).

    Сокращаем то, что можно и записываем получившееся уравнение.

    Приводим подобные слагаемые

    Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень — посторонний. В ответ записываем только второй.

    Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac) (=0)

    Записываем и «решаем» ОДЗ.

    Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)).
    Благо (x_1) и (x_2) мы уже нашли.

    Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение.

    Приводим подобные слагаемые

    Находим корни уравнения

    Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

    Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

    Как решать дробно-рациональные уравнения? | Математика

    Дробно-рациональные уравнения

    Видео:Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 — 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 — 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    Видео:Приведение алгебраических дробей к общему знаменателю. Алгебра 8 класс.Скачать

    Приведение алгебраических дробей к общему знаменателю. Алгебра 8 класс.

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    Начать следует с области допустимых значений:

    x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 — 4 = ( x — 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) — 7 ( x — 2 ) = 8

    x 2 + 2 x — 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

    Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 — 4 · 10 = 9

    x 1 ≠ — 7 + 3 2 = — 2

    x 2 ≠ — 7 — 3 2 = — 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

    — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

    2 x 2 + 9 x — 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x — 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x — 2 — 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

    4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

    x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x — 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    — x 2 — x + 30 = 0 _ _ _ · ( — 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 — 2 x — x x — 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

    x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

    x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

    — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

    Корни квадратного уравнения:

    x 1 = — 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 — x — 6 x — 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

    x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

    x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

    0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x — 2 — 3 x + 2 = 20 x 2 — 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

    5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

    2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

    ( x — 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

    Начнем с определения ОДЗ:

    — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

    ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

    ( x — 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = — 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.

    Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Решение уравнений с дробями

    Как находить общий знаменатель дробно рациональных уравнений

    О чем эта статья:

    5 класс, 6 класс, 7 класс

    Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

    Решение дробных рациональных уравнений. Алгебра, 8 класс

    Понятие дроби

    Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

    Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

    • обыкновенный вид — ½ или a/b,
    • десятичный вид — 0,5.

    Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

    Дроби бывают двух видов:

    1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
    2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

    Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

    Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

    Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

    Основные свойства дробей

    Дробь не имеет значения, если делитель равен нулю.

    Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

    Дроби a/b и c/d называют равными, если a × d = b × c.

    Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

    Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

    Видео:Дробно рациональные уравнения. Алгебра, 9 классСкачать

    Дробно рациональные уравнения. Алгебра, 9 класс

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

    • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
    • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Решить уравнение значит найти все его корни или убедиться, что корней нет.

    Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

    Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
    • если а равно нулю, а b не равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Видео:Как проверяют учеников перед ЕНТСкачать

    Как проверяют учеников перед ЕНТ

    Понятие дробного уравнения

    Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

    Как находить общий знаменатель дробно рациональных уравнений Как находить общий знаменатель дробно рациональных уравнений

    Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

    Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

    Как находить общий знаменатель дробно рациональных уравнений Как находить общий знаменатель дробно рациональных уравнений

    На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

    Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

    Видео:Решить уравнение с дробями - Математика - 6 классСкачать

    Решить уравнение с дробями - Математика - 6 класс

    Как решать уравнения с дробями

    1. Метод пропорции

    Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

    Итак, у нас есть линейное уравнение с дробями:

    Как находить общий знаменатель дробно рациональных уравнений

    В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

    Как находить общий знаменатель дробно рациональных уравнений

    После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

    Как находить общий знаменатель дробно рациональных уравнений

    2. Метод избавления от дробей

    Возьмем то же самое уравнение, но попробуем решить его по-другому.

    Как находить общий знаменатель дробно рациональных уравнений

    В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

    • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
    • умножить на это число каждый член уравнения.

    Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

    Как находить общий знаменатель дробно рациональных уравнений

    Вот так просто мы получили тот же ответ, что и в прошлый раз.

    Что еще важно учитывать при решении

    • если значение переменной обращает знаменатель в 0, значит это неверное значение;
    • делить и умножать уравнение на 0 нельзя.

    Универсальный алгоритм решения

    Определить область допустимых значений.

    Найти общий знаменатель.

    Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

    Раскрыть скобки, если нужно и привести подобные слагаемые.

    Решить полученное уравнение.

    Сравнить полученные корни с областью допустимых значений.

    Записать ответ, который прошел проверку.

    Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

    Видео:Как найти общий знаменатель. Математика 6 класс простоСкачать

    Как найти общий знаменатель. Математика 6 класс просто

    Примеры решения дробных уравнений

    Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

    Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

    1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
    2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Решим обычное уравнение.

    Пример 2. Найти корень уравненияКак находить общий знаменатель дробно рациональных уравнений

    1. Область допустимых значений: х ≠ −2.
    2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
    3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

    Как находить общий знаменатель дробно рациональных уравнений

    Переведем новый множитель в числитель..

    Как находить общий знаменатель дробно рациональных уравнений

    Сократим левую часть на (х+2), а правую на 2.

    Пример 3. Решить дробное уравнение: Как находить общий знаменатель дробно рациональных уравнений

      Найти общий знаменатель:

    Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

    Выполним возможные преобразования. Получилось квадратное уравнение:

    Решим полученное квадратное уравнение:

    Получили два возможных корня:

    Если x = −3, то знаменатель равен нулю:

    Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • 📽️ Видео

    Общий знаменатель в примерах и в жизни | Математика | TutorOnlineСкачать

    Общий знаменатель в примерах и в жизни | Математика | TutorOnline

    Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать

    Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)

    Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

    Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать

    Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

    Дробно-рациональные уравнения. Подготовка к экзаменам. 61 часть. 9 класс.Скачать

    Дробно-рациональные уравнения. Подготовка к экзаменам. 61 часть. 9 класс.

    Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

    Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика
    Поделиться или сохранить к себе: