Один из методов решения уравнений – это метод логарифмирования. Сейчас мы детально разберем его с теоретической и практической стороны. Сначала покажем, когда применяется метод логарифмирования. Дальше дадим суть метода логарифмирования. После этого перейдем к теоретическому обоснованию. Затем запишем алгоритм решения уравнений методом логарифмирования. Наконец, рассмотрим примеры применения метода при решении уравнений.
- Когда применяется
- Суть метода логарифмирования
- Обоснование метода
- Алгоритм решения уравнений методом логарифмирования
- Примеры применения
- Логарифмическое уравнение: решение на примерах
- Как решать уравнения с логарифмами: 2 способа с примерами
- Пример решения логарифмического уравнения с разными основаниями
- Пример решения логарифмического уравнения с переменными основаниями
- Как сделать проверку
- Методика решения логарифмических уравнений
- 🔍 Видео
Видео:показательно степенное уравнение методом логарифмирования обеих частей уравненияСкачать
Когда применяется
Метод логарифмирования обычно применяется для решения уравнений, логарифмирование обеих частей которых позволяет избавиться от переменной в показателях степеней. Если привязываться к внешнему виду, то такими, в основном, являются:
- Уравнения, в одной части которых находится степень с переменной в показателе, произведение или частное таких степеней, возможно с положительным числовым коэффициентом, а в другой части – положительное число. В качестве примера приведем уравнение x lgx−1 =100 .
- Уравнения, в обеих частях которых находятся степени с переменной в показателях, произведение или частное таких степеней, возможно с положительными числовыми коэффициентами. Таким, например, является уравнение .
В частности, метод логарифмирования можно применять для решения показательных уравнений a f(x) =b и a f(x) =a g(x) , где a и b – числа, причем a>0 , a≠1 , b>0 , а f(x) и g(x) – выражения с переменной x . Например, методом логарифмирования можно решать показательные уравнения 2 x =5 , (0,7) x+2 =(0,7) 4·x 2 −7 , 5 1−x =5 3·lgx и т.п. Однако для решения таких уравнений обычно используют метод уравнивания показателей.
Видео:Решение задания на показательное уравнение (уравнение с х в степени) из реального ЕГЭ по математикеСкачать
Суть метода логарифмирования
Суть метода логарифмирования состоит в логарифмировании обеих частей уравнения по одному и тому же основанию.
Это объясняет название метода.
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Обоснование метода
В основе метода логарифмирования лежит следующая теорема:
Множество решений уравнения u(x)=v(x) , где u(x)>0 и v(x)>0 при любом значении переменной x из области допустимых значений (ОДЗ) для этого уравнения, совпадает с множеством решений уравнения logcu(x)=logcv(x) , где c – положительное и отличное от единицы число.
Нам достаточно показать, что любой корень уравнения u(x)=v(x) является корнем уравнения logcu(x)=logcv(x) , и обратно.
Для доказательства нам потребуется следующее свойство логарифмов: логарифмы двух положительных чисел a и b по одному и тому же положительному и отличному от единицы основанию c равны тогда и только тогда, когда равны числа a и b .
Пусть x0 – корень уравнения u(x)=v(x) . Тогда u(x0)=v(x0) – верное числовое равенство. Так как по условию u(x)>0 и v(x)>0 при любом значении переменной x из ОДЗ для этого уравнения, то u(x0) и v(x0) – положительные числа. Следовательно, в силу озвученного выше свойства из равенства u(x0)=v(x0) вытекает равенство logcu(x0)=logcv(x0) . Из него следует, что x0 – корень уравнения logcu(x)=logcv(x) .
Теперь обратно. Пусть x0 – корень уравнения logcu(x)=logcv(x) . Тогда logcu(x0)=logcv(x0) – верное числовое равенство. Из него и из указанного выше свойства логарифмов следует, что u(x0)=v(x0) . А из этого равенства вытекает, что x0 – корень уравнения u(x)=v(x) .
Видео:Вспоминаем схему Горнера и уравнения высших степенейСкачать
Алгоритм решения уравнений методом логарифмирования
Информация из предыдущих пунктов позволяет записать алгоритм решения уравнений методом логарифмирования.
Чтобы решить уравнение методом логарифмирования, надо
- Убедиться, что выражения, отвечающие частям уравнения, принимают положительные значения при любом значении переменной из ОДЗ для исходного уравнения.
- Прологарифмировать обе части уравнения по одному и тому же положительному и отличному от единицы основанию.
- Решить полученное уравнение. Его решение является решением исходного уравнения.
Какое число брать в качестве основания при логарифмировании? По большому счету, это не имеет значения. Понятно, что целесообразно брать такое основание, при котором дальнейшие действия будут наиболее простыми. Например, уравнение 5 x 2 +5 =5 −6·x стоит логарифмировать по основанию 5 , так как это дает наиболее простое решение: 5 x 2 +5 =5 −6·x , log55 x 2 +5 =log55 −6·x , x 2 +5=−6·x , . Если выбрать любое другое основание, например, 10 , то мы придем к такому же результату, но за большее число шагов: 5 x 2 +5 =5 −6·x , lg5 x 2 +5 =lg5 −6·x , (x 2 +5)·lg5=(−6·x)·lg5 , x 2 +5=−6·x , …
Видео:84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать
Примеры применения
Осталось посмотреть, как метод логарифмирования применяется на практике. Для этого обратимся к конкретным примерам.
Решите уравнение методом логарифмирования.
Заданное уравнение представляет собой равенство двух степеней с положительными и отличными от единицы основаниями. Такие степени принимают только положительные значения, что следует из определения степени. Все это открывает дорогу для решения заданного уравнения методом логарифмирования.
Так как основаниями степеней в исходном уравнении являются числа 3 , то логарифмирование целесообразно проводить по основанию 3 . Логарифмирование обеих частей уравнения по основанию 3 дает уравнение . Оно с опорой на свойства логарифмов приводится к уравнению . Полученное уравнение равносильно исходному. Поэтому, решив его, мы получим нужное нам решение уравнения .
Итак, все свелось к решению уравнения . Виден общий множитель , который стоит вынести за скобки. Также не помешает избавиться от дроби. Это подталкивает начинать решение по методу решения уравнений через преобразования:
Все проделанные преобразования являются равносильными преобразованиями, поэтому, полученное уравнение равносильно уравнению, которое было до проведения этих преобразований. Полученное уравнение , очевидно, можно решить методом разложения на множители:
Первое уравнение — иррациональное с тривиальным решением 0 . Второе уравнение 2 x −4=0 переносом четверки в правую часть приводится к простейшему показательному уравнению 2 x =4 с легко находящимся единственным корнем 2 ( 2 x =4 , 2 x =2 2 , x=2 ). Завершающим этапом метода разложения на множители является проверка найденных корней. Проведем проверку подстановкой: оба найденных корня 0 и 2 удовлетворяют уравнению , значит, являются его корнями. Таким образом, уравнение имеет два корня 0 и 2 .
Остается сослаться на равносильность уравнения уравнению , которое в свою очередь равносильно исходному уравнению , и записать найденные корни в ответ.
При решении следующего уравнения покажем, как правильно проводить логарифмирование по основанию с переменной.
Видео:Решение логарифмических уравнений #shortsСкачать
Логарифмическое уравнение: решение на примерах
Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.
Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.
Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.
Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Как решать уравнения с логарифмами: 2 способа с примерами
Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Вспоминаем определение логарифма и получаем следующее:Таким образом мы получаем простое уравнение, которое сможем легко решить.
При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!
Давайте посмотрим, как это работает на примере:
Воспользуемся определением логарифма и получим:
Теперь перед нами простейшее уравнение, решить которое не составит труда:
Сделаем проверку. Подставим найденный Х в исходное уравнение:Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.
Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.
Поэтому мы покажем еще один способ решения логарифмических уравнений.
Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:
Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.
Решим еще раз то же самое уравнение, но теперь этим способом:В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.
Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:То есть в нашем случае:Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:
Воспользуемся этим свойством в нашем случае, получим:Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:
Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.
Разберем другой пример:Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:После преобразования правой части наше уравнение принимает следующий вид:Теперь можно зачеркнуть логарифмы и тогда получим:Вспоминаем свойства степеней:
Теперь делаем проверку:то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.
Еще один пример решения логарифмического уравнения:Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Теперь преобразуем правую часть уравнения:Выполнив преобразования правой и левой частей уравнения, мы получили:Теперь мы можем зачеркнуть логарифмы:
Решим данное квадратное уравнение, найдем дискриминант:
Сделаем проверку, подставим х1 = 1 в исходное уравнение:Верно, следовательно, х1 = 1 является корнем уравнения.
Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.
Видео:Уравнение четвертой степениСкачать
Пример решения логарифмического уравнения с разными основаниями
Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,
Правильно, нужно привести логарифмы в правой и левой части к одному основанию!
Итак, разберем наш пример:Преобразуем правую часть нашего уравнения:
Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Применяем эти знания и получаем:Но пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:
Тогда получим:Вот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Делаем проверку:Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Верно, следовательно, х = 4 является корнем уравнения.
Видео:Как решать уравнения с дробной степеньюСкачать
Пример решения логарифмического уравнения с переменными основаниями
Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Преобразуем правую часть уравнения:Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Теперь мы можем зачеркнуть логарифмы:Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:
1. Аргумент логарифма должен быть больше ноля, следовательно:
2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:
Сведем все требования в систему:
Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Перепишем нашу систему:Следовательно, наша система примет следующий вид:Теперь решаем наше уравнение:Справа у нас квадрат суммы:Данный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.
Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:
Т.к. 3 2 =9, то последнее выражение верно.
Видео:Показательные уравнения. 11 класс.Скачать
Как сделать проверку
Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.
Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:
После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!
Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.
Видео:Как решать Показательные Уравнения? (часть 2)Скачать
Методика решения логарифмических уравнений
Разделы: Математика
Введение
Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.
Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.
Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.
При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.
История возникновения логарифмов подробно представлена в работе прошлого года.
Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.
Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:
(1)
Решение этих уравнений основано на следующей теореме.
Теорема 1. Уравнение равносильно системе
(2)
Для решения уравнения (1) достаточно решить уравнение
(3)
и его решения подставить в систему неравенств
(4),
задающую область определения уравнения (1).
Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).
При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.
Пример 1: Решить уравнение
Оба значения х удовлетворяют условиям системы.
Ответ:
Рассмотрим уравнения вида:
(5)
Их решение основано на следующей теореме
Теорема 2: Уравнение (5) равносильно системе
(6)
Корнями уравнения (5) будут только те корни уравнения , которые
принадлежат области определения, задаваемой условиями .
Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.
1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).
Пример 2: Решить уравнение
Решение: В силу теоремы 2 данное уравнение равносильно системе:
Всем условиям системы удовлетворяет лишь один корень. Ответ:
2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .
Пример 3: Найти х, если
Значение х = 3 принадлежит области определения уравнения. Ответ х = 3
3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.
Пример 4: Решить уравнение
Оба значения х являются корнями уравнения.
Ответ:
Пример 5: Решить уравнение
Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».
Оба корня принадлежат области допустимых значений логарифмической функции.
Ответ: х = 0,1; х = 100
5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.
Пример 6: Решить уравнение
Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:
Тогда данное уравнение примет вид:
Так как , то это корень уравнения.
Ответ: х = 16
6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.
Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.
Пусть ; тогда
Учитывая, что
После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.
Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.
Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.
Пример 7: Решить уравнение
Решение: Построим графики функций и y = x
Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).
Ответ: корней нет
Пример 8: Найти х, если
Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.
Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,
истинно
Докажем, что других корней данное уравнение не имеет.
Эти корни следует искать во множестве значений х.
Допустимые значения х находятся в промежутке
На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.
🔍 Видео
Логарифмы, часть 4, зачем логарифмировать уравнения?Скачать
Как логарифмировать выражения?Скачать
Логарифмы-1. Уравнения: от базы до олимпиадСкачать
Решение логарифмических уравнений ПРИМЕР #37 Метод логарифмированияСкачать
ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать
Что делать, если икс в степени икс? Быстрое экспоненциальное уравнениеСкачать
УДИВИТЕЛЬНЫЙ способ решения уравнения 4-ой степениСкачать
УДИВИТЕЛЬНЫЙ способ решения уравнения ★ Вы такого не видели! ★ Уравнение четвертой степениСкачать
Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать