Как избавиться от дробной черты в уравнении

Линейные уравнения с дробями

Линейные уравнения с дробями не содержат переменной в знаменателе. Чтобы решить линейное уравнение с дробями, удобно избавиться от знаменателей.

Для этого нужно найти наименьший общий знаменатель всех входящих в уравнение дробей и обе части уравнения умножить на это число.

Как избавиться от дробной черты в уравнении

Наименьший общий знаменатель данных дробей равен 6. Дополнительный множитель к первой дроби равен 2, ко второй — 3, к 5 — 6. Умножаем обе части уравнения на наименьший общий знаменатель:

Как избавиться от дробной черты в уравнении

В результате наименьший общий знаменатель и знаменатель каждой дроби сокращаются, и получаем линейное уравнение, не содержащее дробей.

Как избавиться от дробной черты в уравнении

Раскроем скобки и приведём подобные слагаемые:

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Обе части уравнения делим на число, стоящее перед иксом:

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Из полученной неправильной дроби выделяем целую часть

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Наименьший общий знаменатель данных дробей равен 20. Найдем дополнительный множитель к каждой дроби и умножим обе части уравнения на 20:

Как избавиться от дробной черты в уравнении

Можно, конечно, сразу же умножить дополнительный множитель на числитель каждой дроби. Но, к сожалению, наибольшее количество ошибок при решении линейных уравнений с дробями допускается именно на этом шаге. Скобки — друзья ученика :). Поэтому лучше воспользоваться их помощью:

Как избавиться от дробной черты в уравнении

Особенно полезны скобки в случае, когда перед дробью стоит знак «минус».

Как избавиться от дробной черты в уравнении

После раскрытия скобок можно сразу же перенести неизвестные в одну сторону уравнения, известные — в другую (не забыв при переносе изменить их знаки), а можно сначала упростить каждую часть, приведя подобные слагаемые, а потом уже переносить.

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Здесь наименьший общий знаменатель дробей равен 12. Находим дополнительный множитель к каждой дроби и умножаем обе части уравнения на 12:

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Раскрываем скобки и упрощаем

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Обе части уравнения делим на число, стоящее перед иксом:

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Уравнения такого вида можно решить, использовать основное свойство пропорции (в верной пропорции произведение крайних членов равно произведению средних членов):

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

Как избавиться от дробной черты в уравнении

при делении двух отрицательных чисел получается положительное число, поэтому минусы можно сразу же не писать.

Как избавиться от дробной черты в уравнении

Если это возможно, лучше ответ записать в виде десятичной дроби:

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Решение уравнений с дробями

Как избавиться от дробной черты в уравнении

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать

ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэ

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как избавиться от дробной черты в уравнении Как избавиться от дробной черты в уравнении

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как избавиться от дробной черты в уравнении Как избавиться от дробной черты в уравнении

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как избавиться от дробной черты в уравнении

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как избавиться от дробной черты в уравнении

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как избавиться от дробной черты в уравнении

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как избавиться от дробной черты в уравнении

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как избавиться от дробной черты в уравнении

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак избавиться от дробной черты в уравнении

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как избавиться от дробной черты в уравнении

Переведем новый множитель в числитель..

Как избавиться от дробной черты в уравнении

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как избавиться от дробной черты в уравнении

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

    Урок по теме «Решение дробных рациональных уравнений». 8-й класс

    Разделы: Математика

    Класс: 8

    Цели урока:

    • формирование понятия дробных рационального уравнения;
    • рассмотреть различные способы решения дробных рациональных уравнений;
    • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
    • обучить решению дробных рациональных уравнений по алгоритму;
    • проверка уровня усвоения темы путем проведения тестовой работы.
    • развитие умения правильно оперировать полученными знаниями, логически мыслить;
    • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
    • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
    • развитие критического мышления;
    • развитие навыков исследовательской работы.
    • воспитание познавательного интереса к предмету;
    • воспитание самостоятельности при решении учебных задач;
    • воспитание воли и упорства для достижения конечных результатов.

    Тип урока: урок – объяснение нового материала.

    Ход урока

    1. Организационный момент.

    Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

    Как избавиться от дробной черты в уравнении

    Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

    2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

    А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

    1. Что такое уравнение? (Равенство с переменной или переменными.)
    2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
    3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
    4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
    5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
    6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

    3. Объяснение нового материала.

    Решить в тетрадях и на доске уравнение №2.

    Как избавиться от дробной черты в уравнении

    Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

    Как избавиться от дробной черты в уравнении

    х 2 -4х-2х+8 = х 2 +3х+2х+6

    х 2 -6х-х 2 -5х = 6-8

    Как избавиться от дробной черты в уравнении

    Решить в тетрадях и на доске уравнение №4.

    Как избавиться от дробной черты в уравнении

    Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

    Как избавиться от дробной черты в уравнении

    Теперь попытайтесь решить уравнение №7 одним из способов.

    📸 Видео

    ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

    ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

    Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать

    Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая  часть. 8 класс.

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

    Как решают уравнения в России и СШАСкачать

    Как решают уравнения в России и США

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

    6 класс. 7 класс. Дробные выражения. Решение уравнений. Преобразование уравнений.Скачать

    6 класс. 7 класс. Дробные выражения. Решение уравнений. Преобразование уравнений.

    Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.Скачать

    Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.

    Квадратные уравнения #shorts Как решать квадратные уравненияСкачать

    Квадратные уравнения #shorts  Как решать квадратные уравнения

    СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    Умножение, деление и сложение дробей #математика #алгебра #дроби #5классСкачать

    Умножение, деление и сложение дробей #математика #алгебра #дроби #5класс

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью  ОГЭ ЕГЭ
    Поделиться или сохранить к себе: