Как делить уравнения столбиком с остатком

Деление многочленов столбиком

Алгоритм деления в столбик применяется в частности при нахождении интегралов.

  • Решение онлайн
  • Видеоинструкция

Пример деления в столбик . Найти частное деления и остаток многочлена:

Как делить уравнения столбиком с остатком

№1.

x 3 -12x 2 -42x -3
x 3 -3x 2x 2
-9x 2 -42

№2.

x 3 -12x 2 -42x -3
x 3 -3x 2x 2 -9x
-9x 2 -42
-9x 2 + 27x
-27x -42

№3.

x 3 -12x 2 -42x -3
x 3 -3x 2x 2 -9x -27
-9x 2 -42
-9x 2 + 27x
-27x -42
-27x + 81
-123

Целая часть: x 2 -9x -27
Остаток: -123

Таким образом, ответ можно записать как: Как делить уравнения столбиком с остатком
см. также и другие примеры решение столбиком.

Пример №1 . Найти частное и остаток от деления многочлена на многочлен:
P(x)=2x 5 +3x 3 -x 2 +4x+1, Q(x)=2x 2 -x+1

Пример №2 . Не производя деление найти остаток от деления многочлена на двучлен:
P(x)=-x 4 +6x 3 -2x 2 +x-2, Q(x)=x-6
Решение. Выделим общий множитель (x-6).
-x 3 (x-6)-2x(x-6)-12x+x-2 = -x 3 (x-6)-2x(x-6)-11(x-6)-66-2 = -x 3 (x-6)-2x(x-6)-11(x-6)-68
Остаток от деления: -68/(x-6)

Видео:ЕГЭ по математике. Деление многочлена на двучленСкачать

ЕГЭ по математике. Деление многочлена на двучлен

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Деление многочленов | Математика | TutorOnlineСкачать

Деление многочленов | Математика | TutorOnline

Калькулятор онлайн.
Деление многочлена на многочлен (двучлен) столбиком (уголком)

С помощью данной математической программы вы можете поделить многочлены столбиком.
Программа деления многочлена на многочлен не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вам нужно или упростить многочлен или умножить многочлены, то для этого у нас есть отдельная программа Упрощение (умножение) многочлена

Видео:Деление в столбик с остатком. Как объяснить деление столбиком?Скачать

Деление в столбик с остатком. Как объяснить деление столбиком?

Немного теории.

Видео:Как делить числа с остатком? Деление на двузначное число с остатком.Скачать

Как делить числа с остатком? Деление на двузначное число с остатком.

Деление многочлена на многочлен (двучлен) столбиком (уголком)

В алгебре деление многочленов столбиком (уголком) — алгоритм деления многочлена f(x) на многочлен (двучлен) g(x), степень которого меньше или равна степени многочлена f(x).

Алгоритм деления многочлена на многочлен представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную.

Для любых многочленов ( f(x) ) и ( g(x) ), ( g(x) neq 0 ), существуют единственные полиномы ( q(x) ) и ( r(x) ), такие что
$$ frac = q(x)+frac $$
причем ( r(x) ) имеет более низкую степень, чем ( g(x) ).

Целью алгоритма деления многочленов в столбик (уголком) является нахождение частного ( q(x) ) и остатка ( r(x) ) для заданных делимого ( f(x) ) и ненулевого делителя ( g(x) )

Видео:Деление многочлена на многочлен. 10 класс.Скачать

Деление многочлена на многочлен. 10 класс.

Пример

Разделим один многочлен на другой многочлен (двучлен) столбиком (уголком):
$$ frac $$

Частное и остаток от деления данных многочленов могут быть найдены в ходе выполнения следующих шагов:
1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой ( (x^3/x = x^2) )

( x^3 )( -12x^2 )( +0x )( -42 )
( x )( -3 )
( x^2 )

2. Умножаем делитель на полученный выше результат деления (на первый элемент частного). Записываем результат под первыми двумя элементами делимого ( (x^2 cdot (x-3) = x^3-3x^2) )

( x^3 )( -12x^2 )( +0x )( -42 )
( x^3 )( -3x^2 )
( x )( -3 )
( x^2 )

3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой ( (x^3-12x^2+0x-42-(x^3-3x^2)=-9x^2+0x-42) )

( x^3 )( -12x^2 )( +0x )( -42 )
( x^3 )( -3x^2 )
( -9x^2 )( +0x )( -42 )
( x )( -3 )
( x^2 )

4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.

( x^3 )( -12x^2 )( +0x )( -42 )
( x^3 )( -3x^2 )
( -9x^2 )( +0x )( -42 )
( -9x^2 )( +27x )
( -27x )( -42 )
( x )( -3 )
( x^2 )( -9x )

5. Повторяем шаг 4.

( x^3 )( -12x^2 )( +0x )( -42 )
( x^3 )( -3x^2 )
( -9x^2 )( +0x )( -42 )
( -9x^2 )( +27x )
( -27x )( -42 )
( -27x )( +81 )
( -123 )
( x )( -3 )
( x^2 )( -9x )( -27 )

6. Конец алгоритма.
Таким образом, многочлен ( q(x)=x^2-9x-27 ) — частное деления многочленов, а ( r(x)=-123 ) — остаток от деления многочленов.

Результат деления многочленов можно записать в виде двух равенств:
( x^3-12x^2-42 = (x-3)(x^2-9x-27)-123 )
или
$$ frac = x^2-9x-27 + frac $$

Видео:Деление многочлена на многочленСкачать

Деление многочлена на многочлен

Деление многочленов

Продолжаем изучать многочлены. В данном уроке мы научимся их делить.

Видео:Как делить уголком? Деление столбикомСкачать

Как делить уголком? Деление столбиком

Деление многочлена на одночлен

Чтобы разделить многочлен на одночлен, нужно разделить на этот одночлен каждый член многочлена, затем сложить полученные частные.

Например, разделим многочлен 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy . Запишем это деление в виде дроби:

Как делить уравнения столбиком с остатком

Теперь делим каждый член многочлена 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy. Получающиеся частные будем складывать:

Как делить уравнения столбиком с остатком

Получили привычное для нас деление одночленов. Выполним это деление:

Как делить уравнения столбиком с остаткомТаким образом, при делении многочлена 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy получается многочлен 15xy 2 + 10y + 5y 2 .

Как делить уравнения столбиком с остатком

При делении одного числа на другое, частное должно быть таким, чтобы при его перемножении с делителем, получалось делимое. Это правило сохраняется и при делении многочлена на одночлен.

В нашем примере произведение полученного многочлена 15xy 2 + 10y + 5y 2 и делителя xy должно быть равно многочлену 15x 2 y 3 + 10xy 2 + 5xy 3 , то есть исходному делимому. Проверим так ли это:

Деление многочлена на одночлен очень похоже на сложение дробей с одинаковыми знаменателями. Мы помним, что для сложения дробей с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений.

Например, чтобы сложить дроби Как делить уравнения столбиком с остатком, Как делить уравнения столбиком с остаткоми нужно записать следующее выражение:

Как делить уравнения столбиком с остатком

Если мы вычислим выражение Как делить уравнения столбиком с остатком, то получим дробь Как делить уравнения столбиком с остатком, значение которой равно 1,5.

При этом выражение Как делить уравнения столбиком с остаткоммы можем вернуть в исходное состояние Как делить уравнения столбиком с остатком, и вычислить по отдельности каждую дробь, затем сложить полученные частные. Результат по прежнему будет равен 1,5

Как делить уравнения столбиком с остатком

Тоже самое происходит при делении многочлена на одночлен. Одночлен берёт на себя роль общего знаменателя для всех членов многочлена. Например, при делении многочлена ax + bx + cx на многочлен x , образуется три дроби с общим знаменателем x

Как делить уравнения столбиком с остатком

Вычисление каждой дроби даст в результате многочлен a + b + c

Как делить уравнения столбиком с остатком

Пример 2. Разделить многочлен 8m 3 n + 24m 2 n 2 на одночлен 8m 2 n

Как делить уравнения столбиком с остатком

Пример 3. Разделить многочлен 4c 2 d − 12c 4 d 3 на одночлен −4c 2 d

Как делить уравнения столбиком с остатком

Видео:Математика без Ху!ни. Деление многочлена на многочлен.Скачать

Математика без Ху!ни. Деление многочлена на многочлен.

Деление одночлена на многочлен

Не существует тождественного преобразования, позволяющего разделить одночлен на многочлен.

Допустим, мы захотели разделить одночлен 2xy на многочлен 5x + 3y + 5 .

Как делить уравнения столбиком с остатком

Результатом этого деления должен быть многочлен, перемножение которого с многочленом 5x + 3y + 5 даёт одночлен 2xy . Но не существует многочлена, перемножение которого с многочленом 5x + 3y + 5 давало бы в результате одночлен 2xy , поскольку перемножение многочленов даёт в результате многочлен, а не одночлен.

Но в учебниках можно встретить задания на нахождение значения выражения при заданных значениях переменных. В исходных выражениях таких заданий бывает выполнено деление одночлена на многочлен. В этом случае никаких преобразований выполнять не нужно. Достаточно подставить значения переменных в исходное выражение и вычислить получившееся числовое выражение.

Например, найдём значение выражения Как делить уравнения столбиком с остаткомпри x = 2 .

Выражение Как делить уравнения столбиком с остаткомпредставляет собой деление одночлена на многочлен. В данном случае мы не сможем выполнить какие-либо преобразования. Единственное, что мы сможем сделать — это подставить число 2 в исходное выражение вместо переменной x и найти значение выражения:

Как делить уравнения столбиком с остатком

Видео:Деление в столбик. Как делить в столбик?Скачать

Деление в столбик. Как делить в столбик?

Деление многочлена на многочлен

Если первый многочлен умножить на второй многочлен, получается третий многочлен. Например, если умножить многочлен x + 5 на многочлен x + 3 , получается многочлен x 2 + 8x + 15

Если произведение разделить на множитель, то получится множимое. Это правило распространяется не только для чисел, но и для многочленов.

Тогда согласно этому правилу, деление полученного нами многочлена x 2 + 8x + 15 на многочлен x + 3 должно давать в результате многочлен x + 5 .

Как делить уравнения столбиком с остатком

Деление многочлена на многочлен выполняется уголком. Отличие будет в том, что при делении многочленов не нужно определять первое неполное делимое, как в случае деления обычных чисел.

Выполним уголком деление многочлена x 2 + 8x + 15 на многочлен x + 3 . Так мы поэтапно увидим, как получается многочлен x + 5 .

Как делить уравнения столбиком с остатком

В данном случае результат нам известен заранее. Это будет многочлен x + 5 . Но чаще всего результат бывает неизвестным. Поэтому решение будем комментировать так, будто результат нам неизвестен.

Результатом деления должен быть новый многочлен. Члены этого многочлена будут появляться один за другим в процессе деления.

Сейчас наша задача найти первый член нового многочлена. Как это сделать?

Когда мы изначально перемножали многочлены x + 5 и x + 3 , мы сначала умножили первый член первого многочлена на первый член второго многочлена. Тем самым мы получили первый член третьего многочлена:

Как делить уравнения столбиком с остатком

Если мы обратно разделим первый член третьего многочлена на первый член второго многочлена, то получим первый член первого многочлена. А это то, что нам нужно. Ведь мы должны прийти к многочлену x + 5 .

Этот же принцип нахождения первого члена будет выполняться и при решении других задач на деление многочленов.

Итак, чтобы найти первый член нового многочлена, нужно первый член делимого разделить на первый член делителя.

Если первый член делимого (в нашем случае это x 2 ) разделить на первый член делителя (это x), получится x. То есть первым членом нового многочлена является x. Записываем его под правым углом:

Как делить уравнения столбиком с остатком

Теперь, как и при делении обычных чисел, умножаем x на делитель x + 3 . На этом этапе нужно суметь умножить одночлен на многочлен. При умножении x на x + 3 , получается x 2 + 3x . Записываем этот многочлен под делимым x 2 + 8x+ 15 так, чтобы подобные члены располагались друг под другом:

Как делить уравнения столбиком с остатком

Теперь из делимого x 2 + 8x + 15 вычитаем x 2 + 3x . Подобные члены вычитаем из подобных им членов. Если из x 2 вычесть x 2 , получится 0 . Ноль не записываем. Далее если из 8x вычесть 3x , получится 5x . Записываем 5x так, чтобы этот член оказался под членами 3x и 8x

Как делить уравнения столбиком с остатком

Теперь, как и при делении обычных чисел, сносим следующий член делимого. Следующий член это 15. Сносить его нужно вместе со своим знаком:

Как делить уравнения столбиком с остатком

Теперь делим многочлен 5x + 15 на x + 3 . Для этого нужно найти второй член нового многочлена. Чтобы его найти, нужно первый член делимого (сейчас это член 5x ) разделить на первый член делителя (это член x ). Если 5x разделить на x , получится 5. То есть вторым членом нового многочлена является 5. Записываем его под правым углом, вместе со своим знаком (член 5 в данном случае положителен)

Как делить уравнения столбиком с остатком

Теперь умножаем 5 на делитель x + 3 . При умножении 5 на x + 3 , получается 5x + 15 . Записываем этот многочлен под делимым 5x + 15

Как делить уравнения столбиком с остатком

Теперь из делимого 5x + 15 вычитаем 5x + 15 . Если из 5x + 15 вычесть 5x + 15 получится 0.

Как делить уравнения столбиком с остатком

На этом деление завершено.

После выполнения деления можно выполнить проверку, умножив частное на делитель. В нашем случае, если частное x + 5 умножить на делитель x + 3 , должен получаться многочлен x 2 + 8x + 15

Пример 2. Разделить многочлен x 2 − 8x + 7 на многочлен x − 7

Записываем уголком данное деление:

Как делить уравнения столбиком с остатком

Находим первый член частного. Разделим первый член делимого на первый член делителя, получим x . Записываем x под правым углом:

Как делить уравнения столбиком с остатком

Умножаем x на x − 7 , получаем x 2 − 7x . Записываем этот многочлен под делимым x 2 − 8x + 7 так, чтобы подобные члены располагались друг под другом:

Как делить уравнения столбиком с остатком

Вычитаем из x 2 − 8x + 7 многочлен x 2 − 7x . При вычитании x 2 из x 2 получается 0 . Ноль не записываем. А при вычитании −7x из −8x получается −x , поскольку −8x − (−7x) = −8x + 7x = −x . Записываем −x под членами −7x и −8x . Далее сносим следующий член 7

Как делить уравнения столбиком с остатком

Следует быть внимательным при вычитании отрицательных членов. Часто на этом этапе допускаются ошибки. Если на первых порах вычитание в столбик даётся тяжело, то можно использовать обычное вычитание многочленов в строку, которое мы изучили ранее. Для этого нужно отдельно выписать делимое и вычесть из него многочлен, который под ним располагается. Преимущество этого метода заключается в том, что следующие члены делимого сносить не нужно — они автоматически перейдут в новое делимое. Давайте воспользуемся этим методом:

Как делить уравнения столбиком с остатком

Вернёмся к нашей задаче. Разделим многочлен −x + 7 на x − 7 . Для этого нужно найти второй член частного. Чтобы его найти, нужно первый член делимого (сейчас это член −x ) разделить на первый член делителя (это член x ). Если −x разделить на x , получится −1 . Записываем −1 под правым углом вместе со своим знаком:

Как делить уравнения столбиком с остатком

Умножаем −1 на x − 7 , получаем −x + 7 . Записываем этот многочлен под делимым −x + 7

Как делить уравнения столбиком с остатком

Теперь из −x + 7 вычитаем −x + 7 . Если из −x + 7 вычесть −x + 7 получится 0

Как делить уравнения столбиком с остатком

Деление завершено. Таким образом, частное от деления многочлена x 2 − 8x + 7 на многочлен x − 7 равно x − 1

Как делить уравнения столбиком с остатком

Выполним проверку. Умножим частное x − 1 на делитель x − 7 . У нас должен получиться многочлен x 2 − 8x + 7

Пример 3. Разделить многочлен x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3

Как делить уравнения столбиком с остатком

Найдём первый член частного. Разделим первый член делимого на первый член делителя, получим x 4

Как делить уравнения столбиком с остатком

Умножаем x 4 на делитель x 2 + x 3 и полученный результат записываем под делимым. Если x 4 умножить на x 2 + x 3 получится x 6 + x 7 . Члены этого многочлена записываем под делимым так, чтобы подобные члены располагались друг под другом:

Как делить уравнения столбиком с остатком

Теперь из делимого вычитаем многочлен x 6 + x 7 . Вычитание x 6 из x 6 даст в результате 0. Вычитание x 7 из x 7 тоже даст в результате 0. Оставшиеся члены 2x 4 и 2x 5 снесём:

Как делить уравнения столбиком с остатком

Получилось новое делимое 2x 4 + 2x 5 . Это же делимое можно было получить, выписав отдельно многочлен x 6 + 2x 4 + x 7 + 2x 5 и вычтя из него многочлен x 6 + x 7

Как делить уравнения столбиком с остатком

Разделим многочлен 2x 4 + 2x 5 на делитель x 2 + x 3 . Как и раньше сначала делим первый член делимого на первый член делителя, получим 2x 2 . Записываем этот член в частном:

Как делить уравнения столбиком с остатком

Умножаем 2x 2 на делитель x 2 + x 3 и полученный результат записываем под делимым. Если 2x 2 умножить на x 2 + x 3 получится 2x 4 + 2x 5 . Записываем члены этого многочлена под делимым так, чтобы подобные члены располагались друг под другом. Затем выполним вычитание:

Как делить уравнения столбиком с остатком

Вычитание многочлена 2x 4 + 2x 5 из многочлена 2x 4 + 2x 5 дало в результате 0, поэтому деление успешно завершилось.

В промежуточных вычислениях члены нового делимого располагались друг от друга, образуя большие расстояния. Это было по причине того, что при умножении частного на делитель, результаты были записаны так, чтобы подобные члены располагались друг под другом.

Эти расстояния между членами нового делимого образуются тогда, когда члены исходных многочленов расположены беспорядочно. Поэтому перед делением желательно упорядочить члены исходных многочленов в порядке убывания степеней. Тогда решение примет более аккуратный и понятный вид.

Решим предыдущий пример, упорядочив члены исходных многочленов в порядке убывания степеней. Если члены многочлена x 6 + 2x 4 + x 7 + 2x 5 упорядочить в порядке убывания степеней, то получим многочлен x 7 + x 6 + 2x 5 + 2x 4 . А если члены многочлена x 2 + x 3 упорядочить в порядке убывания степеней, то получим многочлен x 3 + x 2

Тогда деление уголком многочлена x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3 примет следующий вид:

Как делить уравнения столбиком с остатком

Деление завершено. Таким образом, частное от деления многочлена x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3 равно x 4 + 2x 2

Как делить уравнения столбиком с остатком

Выполним проверку. Умножим частное x 4 + 2x 2 на делитель x 2 + x 3 . У нас должен получиться многочлен x 6 + 2x 4 + x 7 + 2x 5

При перемножении многочленов члены исходных многочленов тоже желательно упорядочивать в порядке убывания степеней. Тогда члены полученного многочлена тоже будут упорядочены в порядке убывания степеней.

Перепишем умножение (x 4 + 2x 2 )(x 2 + x 3 ) упорядочив члены многочленов в порядке убывания степеней.

Пример 4. Разделить многочлен 17x 2 − 6x 4 + 5x 3 − 23x + 7 на многочлен 7 − 3x 2 − 2x

Упорядочим члены исходных многочленов в порядке убывания степеней и выполним уголком данное деление:

Как делить уравнения столбиком с остатком

Как делить уравнения столбиком с остатком

Пример 5. Разделить многочлен 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4 на многочлен a 2 − 3ab − 9b 2

Как делить уравнения столбиком с остатком

Найдем первый член частного. Разделим первый член делимого на первый член делителя, получим 4a 2 . Записываем 4a 2 в частном:

Как делить уравнения столбиком с остатком

Умножим 4a 2 на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым:

Как делить уравнения столбиком с остатком

Вычтем из делимого полученный многочлен 4a 4 − 12a 3 b − 36a 2 b 2

Как делить уравнения столбиком с остатком

Теперь делим −2a 3 b + 12a 2 b 2 − 54b 4 на делитель a 2 − 3ab − 9b 2 . Разделим первый член делимого на первый член делителя, получим −2ab . Записываем −2ab в частном:

Как делить уравнения столбиком с остатком

Умножим −2ab на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым −2a 3 b + 12a 2 b 2 − 54b 4

Как делить уравнения столбиком с остатком

Вычтем из многочлена −2a 3 b + 12a 2 b 2 − 54b 4 многочлен −2a 3 b + 12a 2 b 2 − 18ab 3 . При вычитании подобных членов обнаруживаем, что члены −54b 4 и 18ab 3 не являются подобными, а значит их вычитание не даст никакого преобразования. В этом случае выполняем вычитание там где это можно, а именно вычтем −2a 3 b из −2a 3 b и 6a 2 b 2 из 12a 2 b 2 , а вычитание 18ab 3 из −54b 4 запишем в виде разности −54b 4 − (+18ab 3 ) или −54b 4 − 18ab 3

Как делить уравнения столбиком с остатком

Этот же результат можно получить, если выполнить вычитание многочленов в строку с помощью скобок:

Как делить уравнения столбиком с остатком

Вернёмся к нашей задаче. Разделим 6a 2 b 2 − 54b 4 − 18ab 3 на делитель a 2 − 3ab − 9b 2 . Делим первый член делимого на первый член делителя, получим 6b 2 . Записываем 6b 2 в частном:

Как делить уравнения столбиком с остатком

Умножим 6b 2 на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым 6a 2 b 2 − 54b 4 − 18ab 3 . Сразу вычтем этот полученный результат из делимого 6a 2 b 2 − 54b 4 − 18ab 3

Как делить уравнения столбиком с остатком

Деление завершено. Таким образом, частное от деления многочлена 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4 на многочлен a 2 − 3ab − 9b 2 равно 4a 2 − 2ab + 6b 2 .

Как делить уравнения столбиком с остатком

Выполним проверку. Умножим частное 4a 2 − 2ab + 6b 2 на делитель a 2 − 3ab − 9b 2 . У нас должен получиться многочлен 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4

Как делить уравнения столбиком с остатком

Видео:Схема Горнера. 10 класс.Скачать

Схема Горнера. 10 класс.

Деление многочлена на многочлен с остатком

Как и при делении обычных чисел, при делении многочлена на многочлен может образоваться остаток от деления.

Для начала вспомним деление обычных чисел с остатком. Например, разделим уголком 15 на 2. С остатком это деление будет выполнено так:

Как делить уравнения столбиком с остатком

То есть при делении 15 на 2 получается 7 целых и 1 в остатке. Ответ записывается следующим образом:

Как делить уравнения столбиком с остатком

Рациональное число Как делить уравнения столбиком с остаткомчитается как семь целых плюс одна вторая. Знак «плюс» по традиции не записывают. Но если при делении многочлена на многочлен образуется остаток, то этот плюс записывать нужно.

Например, если при делении многочлена a на многочлен b получится частное c , да еще останется остаток q , то ответ будет записан так:

Как делить уравнения столбиком с остатком

Например, разделим многочлен 2x 3 − x 2 − 5x + 4 на многочлен x − 3

Как делить уравнения столбиком с остатком

Найдем первый член частного. Разделим первый член делимого на первый член делителя, получим 2x 2 . Записываем 2x 2 в частном:

Как делить уравнения столбиком с остатком

Умножим 2x 2 на делитель x − 3 и полученный результат запишем под делимым:

Как делить уравнения столбиком с остатком

Вычтем из делимого полученный многочлен 2x 3 − 6x 2

Как делить уравнения столбиком с остатком

Теперь делим 5x 2 − 5x + 4 на делитель x − 3 . Разделим первый член делимого на первый член делителя, получим 5x . Записываем 5x в частном:

Как делить уравнения столбиком с остатком

Умножим 5x на делитель x − 3 и полученный результат запишем под делимым 5x 2 − 5x + 4

Как делить уравнения столбиком с остатком

Вычтем из многочлена 5x 2 − 5x + 4 многочлен 5x 2 − 15x

Как делить уравнения столбиком с остатком

Теперь делим 10x + 4 на делитель x − 3 . Разделим первый член делимого на первый член делителя, получим 10 . Записываем 10 в частном:

Как делить уравнения столбиком с остатком

Умножим 10 на делитель x − 3 и полученный результат запишем под делимым 10x + 4 . Сразу вычтем этот полученный результат из делимого 10x + 4

Как делить уравнения столбиком с остатком

Число 34, полученное в результате вычитания многочлена 10x − 30 из многочлена 10x + 4 , является остатком. Мы не сможем найти следующий член частного, который при умножении с делителем x − 3 дал бы нам в результате 34 .

Поэтому при делении многочлена 2x 3 − 2x 2 − 5x + 4 на многочлен x − 3 получается 2x 2 + 5x + 10 и 34 в остатке. Ответ записывается таким же образом, как и при делении обычных чисел. Сначала записывается целая часть (она располагается под правым углом) плюс остаток, разделенный на делитель:

Как делить уравнения столбиком с остатком

Видео:Деление многочленов столбиком и схема ГорнераСкачать

Деление многочленов  столбиком и  схема Горнера

Когда деление многочленов невозможно

Деление многочлена на многочлен невозможно в случае, если степень делимого окажется меньше степени делителя.

Например, нельзя разделить многочлен x 3 + x на многочлен x 4 + x 2 , поскольку делимое является многочленом третьей степени, а делитель — многочленом четвёртой степени.

Вопреки этому запрету можно попробовать разделить многочлен x 3 + x на многочлен x 4 + x 2 , и даже получить частное x − 1 , которое при перемножении с делителем будет давать делимое:

Как делить уравнения столбиком с остатком

Как делить уравнения столбиком с остатком

Но при делении многочлена на многочлен должен получаться именно многочлен, а частное x − 1 многочленом не является. Ведь многочлен состоит из одночленов, а одночлен в свою очередь это произведение чисел, переменных и степеней. Выражение x − 1 это дробь Как делить уравнения столбиком с остатком, которая не является произведением.

Пусть имеется прямоугольник со сторонами 4 и 2

Как делить уравнения столбиком с остатком

Площадь этого прямоугольника будет равна 4 × 2 = 8 кв.ед.

Увеличим длину и ширину этого прямоугольника на x

Как делить уравнения столбиком с остатком

Достроим отсутствующие стороны:

Как делить уравнения столбиком с остатком

Теперь прямоугольник имеет длину x + 4 и ширину x + 2 . Площадь этого прямоугольника будет равна произведению (x + 4)(x + 2) и выражаться многочленом x 2 + 6x + 8

При этом мы можем выполнить обратную операцию, а именно разделить площадь x 2 + 6x + 8 на ширину x + 2 и получить длину x + 4 .

Как делить уравнения столбиком с остатком

Степень многочлена x 2 + 6x + 8 равна сумме степеней многочленов-сомножителей x + 4 и x + 2 , а значит ни одна из степеней многочленов-сомножителей не может превосходить степень многочлена-произведения. Следовательно, чтобы обратное деление было возможным, степень делителя должна быть меньше степени делимого.

📸 Видео

ЛИЧ 10 УРОВНЯ И ТОЛЬКО ПУДЖИ: Стена мяса за Нежить сносит всё на своём пути в Warcraft 3 ReforgedСкачать

ЛИЧ 10 УРОВНЯ И ТОЛЬКО ПУДЖИ: Стена мяса за Нежить сносит всё на своём пути в Warcraft 3 Reforged

Выучить таблицу умножения ЛЕГКО 👉 ссылка на УЛУЧШЕННОЕ видео в описанииСкачать

Выучить таблицу умножения ЛЕГКО 👉 ссылка на УЛУЧШЕННОЕ видео в описании

Кубические уравнения. Деление столбиком. Схема Горнера.Скачать

Кубические уравнения. Деление столбиком. Схема Горнера.

Деление многочлена на многочлен уголком, в столбикСкачать

Деление многочлена на многочлен уголком, в столбик

Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.Скачать

Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.

Детская задача про телевизоры Делаем домашнее задание по математикеСкачать

Детская задача про телевизоры Делаем домашнее задание по математике

Деление многочленов с остаткомСкачать

Деление многочленов с остатком

Деление многочленов столбикомСкачать

Деление многочленов столбиком

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?
Поделиться или сохранить к себе: