Как делать проверку уравнения в математике

Как объяснить уравнения с х (икс) школьнику в 4 классе?

Автор: Творческая Анна

Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.

У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.

Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.

Как делать проверку уравнения в математике

Объяснение примеров с левой стороны, на правую сторону.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Пример № 1

Пример уравнения для 4 класса со знаком плюс.

Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.

Х + 320 = 560 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.

Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.

Всё верно! Значит мы решили уравнение правильно!

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Пример № 2

Пример уравнения для 4 класса со знаком минус.

Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.

Х – 180 = 80 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.

Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Пример № 3

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

400 – х = 275 + 25 Складываем числа.

400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.

400 — 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.

Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.

Проверка:

400 – 100 = 275 + 25 Считаем.

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Пример № 4

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

72 – х = 18 * 3 Выполняем умножение. Переписываем пример.

72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.

72 – 54 = х Считаем.

18 = х Меняем местами, для удобства.

Проверка:

Видео:Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Пример № 5

Пример уравнения с х с вычитанием и сложением для 4 класса.

Х – 290 = 470 + 230 Складываем.

Х – 290 = 700 Выставляем числа с одной стороны.

Х = 700 + 290 Считаем.

Проверка:

990 – 290 = 470 + 230 Выполняем сложение.

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Пример № 6

Пример уравнения с х на умножение и деление для 4 класса.

15 * х = 630/70 Выполняем деление. Переписываем уравнение.

15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.

Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.

Проверка:

15*6 = 630 / 7 Выполняем умножение и вычитание.

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Теперь озвучиваем основные правила:

  1. Умножаем, складываем, делим или вычитаем;

Выполняем то, что можно сделать, уравнение станет немного короче.

Х в одну сторону, цифры в другую.

Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.

При переносе х или цифры через знак равенства, их знак меняется на противоположный.

Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.

  • Если в конце уравнение начинается с числа, то просто меняем местами.
  • Всегда делаем проверку!
  • При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.

    Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.

    Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.

    Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.

    Данное подробное описание, как объяснить уравнения с х школьнику для:

    • родителей;
    • школьников;
    • репетиторов;
    • бабушек и дедушек;
    • учителей;

    Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.

    Как делать проверку уравнения в математике

    Видео:Уравнения со скобками - 5 класс (примеры)Скачать

    Уравнения со скобками - 5 класс (примеры)

    Из своей практики

    Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

    При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

    В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

    Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

    Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

    Видео:Решение матричных уравненийСкачать

    Решение матричных уравнений

    Решение простых линейных уравнений

    Как делать проверку уравнения в математике

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

    Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

    Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

    Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

    Решить уравнение значит найти все возможные корни или убедиться, что их нет.

    Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать

    Математика 5 класс. Уравнение. Корень уравнения

    Какие бывают виды уравнений

    Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

    Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

    Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
    • если а равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Числовой коэффициент — число, которое стоит при неизвестной переменной.

    Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

    Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

    Видео:5 класс. Уравнение. Компоненты уравнения. Корень уравнения и его проверка.Скачать

    5 класс. Уравнение. Компоненты уравнения. Корень уравнения и его проверка.

    Как решать простые уравнения

    Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

    1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

    Для примера рассмотрим простейшее уравнение: x+3=5

    Начнем с того, что в каждом уравнении есть левая и правая часть.

    Перенесем 3 из левой части в правую и меняем знак на противоположный.

    Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

    Решим еще один пример: 6x = 5x + 10.

    Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

    Приведем подобные и завершим решение.

    2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

    Применим правило при решении примера: 4x=8.

    При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

    Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

    Разделим каждую часть на 4. Как это выглядит:

    Как делать проверку уравнения в математике

    Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

    Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

      Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | : (−4)
    x = −3

    Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

    Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

    Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

    Алгоритм решения простого линейного уравнения
    1. Раскрываем скобки, если они есть.
    2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
    3. Приводим подобные члены в каждой части уравнения.
    4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

    Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

    Как делать проверку уравнения в математике

    Видео:УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать

    УРАВНЕНИЕ  4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ  РЕШАЕМ УРАВНЕНИЯ #уравнение

    Примеры линейных уравнений

    Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

    Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

      Перенести 1 из левой части в правую со знаком минус.

    Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

    Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

    5х − 15 + 2 = 3х − 12 + 2х − 1

    Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

    5х − 3х − 2х = −12 − 1 + 15 − 2

    Приведем подобные члены.

    Ответ: х — любое число.

    Пример 3. Решить: 4х = 1/8.

      Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

    Пример 4. Решить: 4(х + 2) = 6 − 7х.

    1. 4х + 8 = 6 − 7х
    2. 4х + 7х = 6 − 8
    3. 11х = −2
    4. х = −2 : 11
    5. х = −2/11

    Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

    Пример 5. Решить: Как делать проверку уравнения в математике

    1. Как делать проверку уравнения в математике
    2. 3(3х — 4) = 4 · 7х + 24
    3. 9х — 12 = 28х + 24
    4. 9х — 28х = 24 + 12
    5. -19х = 36
    6. х = 36 : (-19)
    7. х = — 36/19

    Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

    5х — 15 + 2 = 3х — 2 + 2х — 1

    Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    Приведем подобные члены.

    Ответ: нет решений.

    Пример 7. Решить: 2(х + 3) = 5 − 7х.

    Видео:Уравнение. 5 класс.Скачать

    Уравнение. 5 класс.

    Что такое уравнение и корни уравнения? Как решить уравнение?

    Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

    Видео:Математика 2 класс (Урок№27 - Проверка сложения. Проверка вычитания.)Скачать

    Математика 2 класс (Урок№27 - Проверка сложения. Проверка вычитания.)

    Что такое уравнение? Смысл и понятия.

    Узнаем сначала все понятия, связанные с уравнением.

    Определение:
    Уравнение – это равенство, содержащее переменные и числовые значения.

    Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

    Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

    Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

    Рассмотрим теперь, все термины на простом примере:
    x+1=3

    В данном случае x – переменная или неизвестное значение уравнения.

    Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

    Получили верное равенство. Значит, правильно нашли корни уравнения.

    Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

    Видео:3 класс. Математика. УравнениеСкачать

    3 класс. Математика. Уравнение

    Правила уменьшения или увеличения уравнения на определенное число.

    Чтобы понять правило рассмотрим подробно простой пример:
    Решите уравнение x+2=7

    Решение:
    Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

    Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

    Как делать проверку уравнения в математике

    Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

    Проверка:
    Вместо переменной x подставим 5.

    x+2=7
    5+2=7
    Получили верное равенство, значит уравнение решено верно.
    Ответ: 5.

    Разберем следующий пример:
    Решите уравнение x-4=12.

    Решение:
    Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

    Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

    Как делать проверку уравнения в математике

    Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
    x-4=12
    16-4=12
    Ответ: 16

    Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

    Рассмотрим пример:
    Решите уравнение 4+3x=2x-5

    Решение:
    Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
    Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

    4+3x= 2x -5
    4+3x -2x =-5

    Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
    4 +3x-2x=-5
    3x-2x=-5 -4

    Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
    (3-2)x=-9
    1x=-9 или x=-9

    Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
    4+3x=2x-5
    4+3⋅ (-9) =2⋅ (-9) -5
    4-27=-18-5
    -23=-23

    Получилось верное равенство, уравнение решено верно.
    Ответ: корень уравнения x=-9.

    Видео:Как решают уравнения в России и СШАСкачать

    Как решают уравнения в России и США

    Правила уменьшения или увеличения уравнения в несколько раз.

    Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

    Рассмотрим пример:
    Решите уравнение 5x=20.

    Решение:
    В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

    5x=20
    5x :5 =20 :5
    5:5x=4
    1x=4 или x=4

    Делаем проверку уравнения. Вместо переменной x подставляем 4.
    5x=20
    5⋅ 4 =20
    20=20 получили верное равенство, корень уравнение найден правильно.
    Ответ: x=4.

    Рассмотрим следующий пример:
    Найдите корни уравнения .

    Решение:
    Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

    Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

    7=7 получено верное равенство.

    Ответ: корень уравнения равен x=21.

    Следующий пример:
    Найдите корни уравнения

    Решение:
    Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
    Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.

    Далее делим все уравнение на 3.

    3x :3 =45 :3
    (3:3)x=15

    Сделаем проверку. Подставим в уравнение найденный корень.

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Как решать уравнения? Алгоритм действий.

    Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

    1. Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
    2. Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
    3. Избавиться от коэффициента при переменной если нужно.
    4. В итоге всех действий получаем корень уравнение. Выполняем проверку.

    Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

    📺 Видео

    АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

    АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

    Уравнения. 5 классСкачать

    Уравнения. 5 класс
    Поделиться или сохранить к себе: