Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Как составлять ионные уравнения. Задача 31 на ЕГЭ по химии

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Видео:Химия | Молекулярные и ионные уравненияСкачать

Химия | Молекулярные и ионные уравнения

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации — вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O + ) и анионы хлора (Cl — ). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br — (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая «обычные» (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl — . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо «виртуальных» молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы — катионы Na + и анионы Cl — . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH — = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH — c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку — 2 балла.

Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O — молекулярное уравнение («обычное» уравнения, схематично отражающее суть реакции);
  • H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O — полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH — = H 2 O — краткое ионное уравнение (мы убрали весь «мусор» — частицы, которые не участвуют в процессе).

Видео:Ионные уравнения реакций. Как составлять полные и сокращенные уравненияСкачать

Ионные уравнения реакций. Как составлять полные и сокращенные уравнения

Алгоритм написания ионных уравнений


  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем «в виде молекул».
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ — краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия — это две соли. Заглянем в раздел справочника «Свойства неорганических соединений». Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

BaCl 2 + Na 2 SO 4 = BaSO 4 &#x2193 + 2NaCl.

Таблица растворимости подсказывает нам, что BaSO 4 действительно не растворяется в воде (направленная вниз стрелка, напомню, символизирует, что данное вещество выпадает в осадок). Молекулярное уравнение готово, переходим к составлению полного ионного уравнения. Обе соли, присутствующие в левой части, записываем в ионной форме, а вот в правой части оставляем BaSO 4 в «молекулярной форме» (о причинах этого — чуть позже!) Получаем следующее:

Ba 2+ + 2Cl — + 2Na + + SO 4 2- = BaSO 4 &#x2193 + 2Cl — + 2Na + .

Осталось избавиться от балласта: убираем ионы-наблюдатели. В данном случае в процессе не участвуют катионы Na + и анионы Cl — . Стираем их и получаем краткое ионное уравнение:

Ba 2+ + SO 4 2- = BaSO 4 &#x2193.

А теперь поговорим подробнее о каждом шаге нашего алгоритма и разберем еще несколько примеров.

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Как составить молекулярное уравнение реакции

Должен сразу вас разочаровать. В этом пункте не будет однозначных рецептов. Действительно, вряд ли можно рассчитывать, что я смогу разобрать здесь ВСЕ возможные уравнения реакций, которые могут встретиться вам на ЕГЭ или ОГЭ по химии.

Ваш помощник — раздел «Свойства неорганических соединений». Если вы хорошо знакомы с четырьмя базовыми классами неорганических веществ (оксиды, основания, кислоты, соли), если вам известны химические свойства этих классов и методы их получения, можете на 95% быть уверены в том, что у вас не будет проблем на экзамене с написанием молекулярных уравнений.

Оставшиеся 5% — это некоторые «специфические» реакции, которые мы не сможем перечислить. Не будем лить слез по поводу этих 5%, а вспомним лучше номенклатуру и химические свойства базовых классов неорганических веществ. Три задания для самостоятельной работы:

Упражнение 1 . Напишите молекулярные формулы следующих веществ: оксид фосфора (V), нитрат цезия, сульфат хрома (III), бромоводородная кислота, карбонат аммония, гидроксид свинца (II), фосфат стронция, кремниевая кислота. Если при выполнении задания у вас возникнут проблемы, обратитесь к разделу справочника «Названия кислот и солей».

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3 ) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме «Химические свойства основных классов неорганических соединений».

Видео:Реакции ионного обмена. 9 класс.Скачать

Реакции ионного обмена. 9 класс.

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие — оставить в «молекулярной форме». Придется запомнить следующее.

В виде ионов записывают:


  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , . ).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин «все остальные вещества», и которые, следуя примеру героя известного фильма, требуют «огласить полный список» даю следующую информацию.

В виде молекул записывают:


  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты . );
  • вообще, все слабые электролиты (включая воду. );
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение — растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) — нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие — в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) — нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl — сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 — растворимая соль. Записываем в ионной форме. Вода — только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl — = Cu 2+ + 2Cl — + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода — типичный кислотный оксид, NaOH — щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 — оксид, газообразное соединение; сохраняем молекулярную форму. NaOH — сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 — растворимая соль; пишем в виде ионов. Вода — слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH — = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка — это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS&#x2193 + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl — = ZnS&#x2193 + 2Na + + 2Cl — .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3 ) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

В следующей части статьи мы научимся составлять краткие ионные уравнения и разберем большое количество примеров. Кроме того, мы обсудим специфические особенности задания 31, которое вам предстоит решать на ЕГЭ по химии.

Видео:9 класс. Реакции ионного обмена. Ионные уравнения.Скачать

9 класс. Реакции ионного обмена. Ионные уравнения.

Вопрос № 5 Напишите уравнения реакций в молекулярном, ионном и сокращенном ионном виде, при помощи которых можно различить соляную, серную и азотную кислоты.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде Решебник по химии за 9 класс (Г.Е.Рудзитис, Ф.Г.Фельдман, 1999 год),
задача №5
к главе «Глава IV §§ 21 — 23 стр. 62 — 63».

Выделите её мышкой и нажмите CTRL + ENTER

Большое спасибо всем, кто помогает делать сайт лучше! =)

Нажмите на значок глаза возле рекламного блока, и блоки станут менее заметны. Работает до перезагрузки страницы.

Видео:Реакции ионного обмена. 9 класс.Скачать

Реакции ионного обмена. 9 класс.

Химия, Биология, подготовка к ГИА и ЕГЭ

Материал для задания 37 ЕГЭ (по-старому С2 ЕГЭ), для олимпиад, да и вообще для тех, кому нужны нормальные знания по химии

Автор статьи — Саид Лутфуллин

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

В статье приведены многие реакции, которые встречаются в ЕГЭ. Формулировки описания реакций тоже как в ЕГЭ, поэтому не удивляйтесь если встретите что-то вроде «…осадок растворяется в кислотах…», конечно же, он не растворяется, он реагирует с кислотой. Растворение – это немного другой процесс, но господа составители из ФИПИ со мной не согласны и упорно применяют в таких случаях именно этот термин.

Видео:Ионные уравнения реакций. По сокращенному ионному уравнению составляем полное ионное и молекулярное.Скачать

Ионные уравнения реакций. По сокращенному ионному уравнению составляем полное ионное и молекулярное.

Уравнения качественных реакций неорганической химии.

(кликните на название категории, чтобы перейти в соответствующий раздел)

I. Элементы IA-группы (щелочные металлы)

– легкие металлы, настолько пластичные, что их можно разрезать ножом. Из-за чрезвычайной активности, на воздухе легко окисляются (некоторые со взрывом), поэтому их хранят в керосине, кроме лития. Литий хранить в керосине невозможно из-за физических свойств. Этот металл легче керосина, поэтому всплывает в нем. Литий хранят в вазелине или еще в чем-нибудь таком инертном и вязком.

Почти все соли щелочных металлов растворимы в воде.

Поэтому обнаружение их катионов выпадением осадка невозможно. Для определения катионов металлов используют метод пирохимического анализа.

Этот метод основан на способности ионов металлов, входящих в состав летучих солей, окрашивать пламя горелки в определенный цвет.

1) Li +

Окрашивает пламя горелки в карминово-красный цвет

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Помимо этого, литий – один единственный щелочной металл, катион которого можно обнаружить с помощью осадка. Катион лития с фосфат-ионом дает белый осадок:

Сокращенное ионное уравнение:

3Li + + PO4 3- → Li3PO4↓

2) Na +

Окрашивает пламя горелки в желтый цвет.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

3) K +

Окрашивает пламя горелки в фиолетовый цвет.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

4) Rb +

Окрашивает пламя горелки в розово-фиолетовый цвет.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

5) Cs +

Окрашивает пламя горелки в голубовато-фиолетовый цвет.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

II. Щелочноземельные металлы (подгруппа кальция)

– металлы серого цвета. Твердые, ножом не режутся. На воздухе ведут себя спокойно: покрываются оксидной пленкой.

Определить катионы щелочноземельных металлов можно как с помощью выпадения осадка, так и с помощью пирохимического метода:

1. Ca 2+

Образует белый осадок с карбонат-ионом : CaCl 2 + K 2 CO 3 → CaCO 3 ↓ + 2 KCl

Сокращенное ионное уравнение: Ca 2+ + CO 3 2- → CaCO 3

Образуется карбонат кальция – мел. Так же карбонат кальция – составная часть накипи. Иногда можно встретить формулировку: «…белый осадок, растворимый в кислотах с выделением газа (без цвета, вкуса, запаха)…». Имеется в виду реакция карбонатов с кислотами:

Катион кальция окрашивает пламя горелки в оранжево-красный цвет .

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

2. Sr 2+

Образует белый нерастворимый в кислотах осадок с сульфат-ионом : SrCl 2 + K 2 SO 4 → SrSO 4 ↓ + 2 KCl

Сокращенное ионное уравнение: Sr 2+ + SO 4 2- → SrSO 4

Окрашивает пламя горелки в темно-красный цвет .

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

3. Ba 2+

Образует белый нерастворимый в кислотах осадок с сульфат-ионом : BaCl 2 + K 2 SO 4 → BaSO 4 ↓ + 2 KCl

Сокращенное ионное уравнение: Ba 2+ + SO 4 2- → BaSO 4

Катионы бария окрашивают пламя горелки в зеленый цвет

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

4. Mg 2+

Определяется, как и кальций, карбонат-ионами .

Карбонат магния – белый осадок: Mg ( NO 3 ) 2 + K 2 CO 3 → MgCO 3 ↓ + 2 KNO 3

Сокращенное ионное уравнение: Mg 2+ + CO 3 2- → MgCO 3

III. Be 0 (Be 2+ ), Zn 0 (Zn 2+ ), Al 0 (Al 3+ )

эти три металла объединяют амфотерные свойства. Поэтому если в задании встречается следующая формулировка: «…металл, растворимый в раствор е щелочи…», «…металл, который растворяется и в щелочах, и кислотах…» или «…металл, растворяющийся в щелочи с выделением горючего газа, легче воздуха…» , то имеют в виду один из этих трех металлов.

Ионы этих металлов в растворах тоже определяют добавлением щелочи.

Выпадает белый студенистый осадок (гидроксид металла), который в избытке щелочи растворяется (гидроксиды алюминия, цинка и бериллия реагируют со щелочами, образуя растворимые гидроксоалюминаты, гидроксоцинкаты и гидроксобериллаты соответственно):

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

BeCl 2 + 2 KOH → Be ( OH ) 2 ↓ + 2 KCl

(образование осадка) сокращенное ионное уравнение:

Be 2+ + 2 OH — → Be ( OH ) 2 ↓ Be ( OH ) 2 + 2 KOH → K 2 [ Be ( OH ) 4 ] (растворение осадка)

ZnCl 2 + 2 KOH → Zn ( OH ) 2 ↓ + 2 KCl (образование осадка)

сокращенное ионное уравнение: Zn 2+ + 2 OH — → Zn ( OH ) 2

Zn ( OH ) 2 + 2 KOH → K 2 [ Zn ( OH ) 4 ] (растворение осадка)

AlCl 3 + 3 KOH → Al ( OH ) 3 ↓ + 3 KOH (образование осадка)

сокращенное ионное уравнение:

Al 3+ + 3 OH — → Al ( OH ) 3

Al ( OH ) 3 + KOH → K [ Al ( OH ) 4 ] (растворение осадка)

Оксиды этих металлов, как и гидроксиды, растворяются в кислотах и щелочах, рассмотрим на примере оксида алюминия:

У гидроксида цинка есть характерная особенность: он растворяется в NH 3 (водн.)

Ион Zn 2+ с S 2+ образует белый осадок . Который растворяется в кислотах с выделением газа с запахом тухлых яиц – сероводорода (про него подробнее ниже, в разделе сера):

ZnSO 4 + K 2 S → ZnS ↓ + K 2 SO 4 (образование осадка)

Сокращенное ионное уравнение:

ZnS + H 2 SO 4 → ZnSO 4 + H 2 S ↑ (растворение осадка с выделением сероводорода)

Медь – пластичный розовато-красный металл.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Хороший проводник электрического тока.

Не вытесняет из кислот водород.

Реагирует только с кислотами-окислителями (азотной и концентрированной серной):

Оксид меди – CuO – черный – основный.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Растворяется в кислотах, окрашивая раствор в голубой цвет: CuO + 2HCl → CuCl 2 + H 2 O

Cu 2+

Летучие соли меди окрашивают пламя горелки в зеленый цвет. Соединения меди имеют голубоватую окраску , это можно использовать как диагностический признак.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

В растворе ионы меди можно обнаружить добавлением щелочи выпадает растворимый в кислотах, голубой осадок, который используется в нескольких качественных реакциях органической химии.

Сокращенное ионное уравнение:

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Осадок Cu ( OH ) 2 растворяется в избытке NH 3 (водн.) образуя интенсивно синий раствор:

Если нагреть осадок Cu ( OH ) 2 , то он почернеет. Потому что гидроксид меди( II ) – нерастворимое основание и разлагается:

Голубой – это фирменный цвет соединений меди, и если в задании ЕГЭ написано про этот цвет, то 90% вероятности, что говорят про соединение меди.

Серебро – мягкий благородный металл. Цвет серебристый.

Оксид серебра Ag 2 O- черный – основный.

Ag +

Катион серебра с хлорид-ионом дает белый творожистый осадок : AgNO 3 + KCl → AgCl ↓ + KNO 3

сокращенное ионное уравнение: Ag + + Cl — → AgCl ↓

Осадок хлорида серебра (и остальные галогениды) , как и гидроксида меди, растворяется в NH 3 * H 2 O

Еще одна особенность серебра, которая позволяет определить его ионы в растворе, – это его гидроксид, который нестабилен и быстро разлагается в водном растворе.

При добавлении к раствору соли серебра щелочи , выпадает черный осадок оксида серебра :

AgNO 3 + KOH → KNO 3 + AgOH

можно (и грамотнее) записать сразу:

То есть при добавлении к соли серебра щелочи выпадает черный осадок . Осадок оксида серебра , как и галогениды этого металла, растворяются в NH 3 (водн.) :

[ Ag ( NH 3 ) 2 ] OH – гидроксид диамминсеребра( I ) известен как раствор Толленса.

Он используется в качественной реакции на альдегиды (реакция серебряного зеркала).

Оксид серебра как основный гидроксид растворяется в кислотах (само собой, в тех, с которыми серебро может образовать растворимую соль):

Железо – серебристо-белый пластичный металл.

Обладает магнитными свойствами.

Вытесняет из растворов кислот водород (кроме азотной). Обратите внимание, что при взаимодействии с кислотами-неокислителями, и слабыми окислителями железо приобретает степень окисления +2, а при взаимодействии с сильными окислителями оно приобретет степень окисления +3:

2 Fe + 3 Cl 2 ( t )→ 2 FeCl 3

Катион Fe 3+

При добавлении к раствору, содержащему ионы трехвалентного железа , выпадает бурый осадок гидроксида железа ( III ):

Сокращенное ионное уравнение:

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Оксид и гидроксид железа( III ) – амфотерные соединения, поэтому они растворяются в щелочах и кислотах:

Катион Fe 2+ с гидроксид ионом тоже образует осадок, только зеленоватого цвета .

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Сокращенное ионное уравнение: Fe 2+ + 2 OH — → Fe ( OH ) 2

Оксид и гидроксид железа( II ) – основные.

В щелочах не растворяются. Осадок со временем буреет (меняет степень окисления с 2+ на +3):

На ионы железы есть еще две похожие канонические качественные реакции. Образуется одно и то же вещество: берлинская лазурь, или турнбулева синь.

Раньше считали, что это два разных вещества, в книжках писали: «не путайте», а потом оказалось, что это не так.

Ион Fe 2+ определяется добавлением красной кровяной соли (гексацианоферрат (III) калия):

4Fe 2+ + 3 [Fe III (CN) 6 ] 3− → Fe III 4 [Fe II (CN) 6 ] 3

Ион Fe 3+ определяется добавлением желтой кровяной соли (гексацианоферрат (II) калия):

4Fe 3+ + 3 [Fe II (CN) 6 ] 4− → Fe III 4 [Fe II (CN) 6 ] 3

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Не очень активный, так как покрывается оксидной пленкой.

Название элемента переводится с греческого «цвет», потому что соединения хрома, как правило, окрашены. Простое вещество хром ведет себя как типичный металл, со щелочами не реагирует.

Реагирует с кислотами. Кислоты-неокислители ( в том числе разбавленная серная кислота) и вообще слабые окислители переводят хром в степень окисления +2:

Cr + S (t)→ CrS C окислителями приобретает степень окисления +3:

В общем тут все как у железа. Правило простое и вполне логичное.

С азотной и концентрированной серной кислотой не реагирует, так как пассивируется.

Проявляет несколько устойчивых степеней окисления.

Степень окисления +2

В этих соединениях хром проявляет сильные восстановительные свойства.

Оксид хрома ( II ) – CrO (основный) – черный.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Растворы солей Cr 2+ голубые . Если обработать черный оксид хрома( II ) соляной кислотой, образуется голубой раствор :

Если к раствору соли двухвалентного хрома добавить щелочь выпадет желтый осадок гидроксида хрома( II ), (осадок на воздухе зеленеет, об этом чуть позже):

Сокращенное ионное уравнение:

Гидроксид хрома( II ) основный,

поэтому он не растворяется в щелочах, зато прекрасно растворяется в кислотах, образуя все тот же синий раствор:

Степень окисления +3.

Оксид хрома( III ) – Cr 2 O 3 (амфотерный) – зеленый .

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Как амфотерный оксид Cr 2 O 3 растворяется в кислотах и щелочах:

Соли трехвалентного хрома могут быть разного цвета (от фиолетового до темно-зеленого). Поэтому визуально опознать соль трехвалентного хрома со 100% уверенностью нельзя. Наличие катионов Cr 3+ в растворе определяется добавлением щелочи .

Cr 3+ с гидроксид-ионами образует зеленый осадок гидроксида хрома( III ) :

Сокращенное ионное уравнение:

Cr 3+ + 3 OH — → Cr ( OH ) 3

Выпавший осадок – гидроксид хрома( III ) амфотерный, поэтому растворяется в кислотах и щелочах, с образованием зеленых солей – гидроксохроматов :

Если оставить на некоторое время на воздухе желтый осадок гидроксида хрома( II ) , то он позеленеет . Cr +2 окисляется до Cr +3 ,

образуется зеленый гидроксид хрома( III ) :

Если подействовать на соединение хрома (+3) сильным окислителем, то произойдет смена окраски. Она станет желтой. Хром окислится до +6

Степень окисления +6.

В этих соединениях хром проявляет сильные окислительные свойства.

Оксид хрома( VI ) – CrO 3 (кислотный) – красный .

Окисляет многие органические соединения. Этот процесс описывают как «растворение [оксида хрома VI ] в спиртах (альдегидах, эфирах)»

Оксид кислотный, поэтому в кислотах не растворяется, растворяется в щелочах, с образованием хроматов:

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Хроматы – это соли хромовой кислоты ( H 2 CrO 4 ). Они желтого цвета. Кроме хромовой (хром +6) образует дихромовую кислоту ( H 2 Cr 2 O 7 ), ее соли – бихроматы (дихроматы) оранжевые .

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Хроматы и бихроматы переходят друг в друга при изменении кислотности среды (с щелочной на кислую и наоборот):

То есть в кислой среде более устойчивы бихроматы, в щелочной хроматы.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Хроматы и бихроматы так же являются сильнейшими окислителями.

При добавлении к раствору хромата катионов бария выпадает желтый осадок хромата бария BaCrO 4 :

Сокращенное ионное уравнение: Ва 2+ + СrO 4 2- → BaCr O 4

Полученный хромат бария растворяется в сильных неорганических кислотах. Потому что, как уже говорилось ранее, в кислой среде хроматы не устойчивы и переходят в бихроматы:

2 BaCrO 4 + 2 H + → 2 Ba 2+ + Cr 2 O 7 2- + H 2 O

Компактная таблица цветов соединения хрома, приведена у нас в статье “Хром”:

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Как и хром малоактивен за счет пассивации.

Реагируя с кислотами (даже с кислотами-окислителями), окисляется до +2:
Mn + HCl → MnCl2 + H2↑
Mn + 2H2SO4(конц.) → MnSO4 + SO2↑ + 2H2O

В более агрессивных средах с кислотами-окислителями процесс окисления идет глубже: до +4 и +7.

Кислородом окисляется до +4 (там конечно есть другие варианты с другими температурами, но мы их рассматривать не будем):

Галогены (кроме фтора) до +2:

Mn + Cl2 (t)→ MnCl2

Проявляет различные степени окисления.

Степень окисления 2+.

Степень окисления 2+. Оксид марганца( II ) – MnO (основный) зеленого цвета .

На воздухе очень быстро окисляется до темно-бурого MnO 2 :

Соли, содержащие катион Mn 2+ как правило имеют бледный светло-розовый цвет .

Катион Mn 2+ обнаруживают гидроксид-ионами, с которыми он образует розовато-белый осадок гидроксида марганца( II ), который окисляется на воздухе и буреет (превращается в бурый оксид марганца( II )):

MnCl 2 + 2 KOH → Mn ( OH ) 2 ↓ + 2 KCl

Сокращенное ионное уравнение:

Mn 2+ + 2 OH — → Mn ( OH ) 2

Степень окисления 4+. Оксид марганца( IV ) – MnO 2 (амфотерный) т емно-бурый – одно из самых устойчивых и встречаемых соединений марганца.

Mn +4 O 2 + 4 HCl → Mn +2 Cl 2 + Cl 2 ↑ + 2 H 2 O

Степень окисления +6. Оксид марганца( VII ) – Mn 2 O 7 (кислотный) зелено-бурая жидкость.

Очень не стабильное и агрессивное вещество, может спонтанно взорваться. Сильный окислитель.

Оксиду марганца( VII ) соответствует марганцевая кислота HMnO 4 .

Она существует только в водном растворе, который как и растворы ее солей (перманганатов) имеет фиолетово-малиновую окраску .

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Перманганаты так же являются сильными окислителями.

В ЕГЭ часто встречаются реакции окисления органических веществ перманганатом калия – это классика:

Приведенное выше уравнение – это качественная реакция на кратные связи – обесцвечивание раствора перманганата и выпадение темно-бурого осадка.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Это весьма необычное вещество. Может быть, трудно представить, но среди всех простых веществ есть только два, которые при нормальных условиях находятся в жидком агрегатном состоянии. Это бром и ртуть.

В нормальных условиях ртутьсеребристо-белая жидкость, с высокой плотностью, поэтому она тонет в воде.

Сама по себе металлическая ртуть вреда не представляет, а вот ее пары и соединения (в особенности органические) чрезвычайно ядовиты.

Качественная реакция на Hg 2+ : при добавлении к раствору соли ртути( II ) щелочи выпадает оранжевый осадок ОКСИДА ртути , гидроксид не образуется, его не существует:

NH 4 + – ион аммония

Если добавить к раствору аммония (иногда нужно нагреть) щелочь образуется нестабильный гидроксид аммония, который разлагается. В ыделяется аммиак – газ с реким запахом (запах нашатырного спирта) :

Можно записать сразу: NH 4 NO 3 + KOH → NH 3 ↑ + H 2 O + KNO 3

Сокращенное ионное уравнение: NH 4 + + NO 3 — → NH 3 ↑ + H 2 O

Выделившийся газ (аммиак) может быть поглощен растворами кислот, с образованием солей аммония: NH 3 + HCl → NH 4 Cl

H +

– частица, в которую превращается атом водорода, отдав электрон.

Получается протон, понятное дело, такая частица в воде не существует.

Частица эта прикреплена по донорно-акцепторному механизму к атому кислорода в молекуле воды, получается ион гидроксония: H 3 O + .

О чем свидетельствует наличие в растворе такого иона?

Конечно же о том, что среда раствора кислая.

А для определения кислотности используют индикаторы.

Рассмотрим несколько индикаторов: лакмус фиолетовый , метиловый оранжевый , фенолфталеин .

Лучше учить названия индикаторов именно так, ведь в таких названиях заключена информации о цвете индикатора в нейтральной среде:

метиловый оранжевый – оранжевый,

ИндикаторЦвет в кислой среде pHЦвет в нейтральной среде pH = 7 Цвет в щелочной среде pH > 7
Лакмус фиолетовыйКрасныйФиолетовыйСиний
Метиловый оранжевыйКрасныйОранжевыйЖелтый
ФенолфталеинНет (бесцветный)Нет (бесцветный)Малиновый

Существует несколько мнемонических правил для запоминания цветов индикаторов:

Фенолфталеиновый в щелочах малиновый, но несмотря на это в кислотах он без цвета.

В кислотах лакмус красный – цвет такой прекрасный, а в щелочах он синий как январский иней, а в нейтральной среде фиолетовый, как нигде. (Этот стишок сочинили когда-то мы с товарищем. Хоть он не совсем складный и мы так и не можем объяснить, с чего бы это иней, который обычно белый, в январе вдруг станет синим, стишок как-то по-особенному запал в мою память, всегда им пользуюсь)

Кислота – начинается на букву К, как и слово «кислый» — помогает вспомнить цвет лакмуса и метилоранжа в кислотах.

– элементы VIIA -группы( F , Cl , Br , I ), типичные неметаллы.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Пойдем по порядку:

Фтор – F 2 – желтый газ с легким зеленым отливом. Самый электроотрицательный неметалл, поэтому с кислородом образует не оксид фтора, а фторид кислорода: OF 2 степень окисления кислорода в нем равна +2. Чрезвычайно активное вещество, реагирует со всем, с чем не лень. И большинство реакций протекает бурно, взрывообразно.

Фторид-ионы ( F — ) в растворе определяются добавлением катионов кальция ( Ca 2+ ), наблюдается выпадение белого осадка :

2 KF + CaCl 2 → 2 KCl + CaF 2

Сокращенное ионное уравнение: Ca 2+ + 2 F — → CaF 2

  1. Хлор – Cl 2 – зеленый газ, с характерным резким запахом, сильный яд, тяжелее воздуха (при химической атаке стелется по земле):

Хлорид-ионы ( Cl — ) в растворе определяются добавлением катионов серебра ( Ag + ), наблюдается выпадение белого творожистого осадка (об этой реакции говорилось ранее в разделе серебро):

KCl + AgNO 3 → AgCl ↓ + KNO 3

Сокращенное ионное уравнение: Ag + + Cl — → AgCl ↓

  1. Бром – Br 2 – красно-бурая летучая жидкость, имеющая очень резкий неприятный запах.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Бромд-ионы ( Br — ) в растворе определяются добавлением катионов серебра ( Ag + ), наблюдается выпадение слегка желтоватого осадка :

KBr + AgNO 3 → AgBr ↓ + KNO 3

Сокращенное ионное уравнение: Ag + + Br — → AgBr ↓

  1. Иод – I 2 – летучие черно-серые с фиолетовым отливом кристаллы. Пары фиолетовые, имеют характерный запах.

Иодид-ионы ( I — ) в растворе определяются добавлением катионов серебра ( Ag + ), наблюдается выпадение желтоватого осадка (цвет интенсивнее, чем у бромида серебра) :

Сокращенное ионное уравнение: Ag + + I — → AgI ↓

Осадки-галогениды не растворяются в разбавленных кислотах.

Простое вещество сера – хрупкие желтые кристаллы.

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Сера может проявлять различные степени окисления:

Степень окисления -2:

в сульфИД-ионе ( S 2- ) и гидросульфИД-ионе ( HS — ).

СульфИДы (и гидросульфИДы) – это соли сероводородной кислоты, которая является слабым электролитом. Поэтому сильные кислоты вытесняют ее из растворов солей. Выделяется H 2 S – сероводород, газ с неприятным запахом тухлых яиц :

K 2 S + 2HCl → 2KCl + H 2 S↑

Сокращенное ионное уравнение: 2 H + + S 2- → H 2 S ↑

Выделившийся газ ( H 2 S ) на воздухе сгорает синим пламенем (не в смысле, что выделился и сразу сгорел, а если начать сжигать):

Так же сероводород ( H 2 S ) может быть поглощен растворами щелочей: H 2 S + 2 NaOH →

Сероводород является хорошим восстановителем, так как сера в нем в низшей степени окисления.

Еще одна особенность ионов S

2- позволяет легко определить их в растворе. Ионы S 2- образуют осадки со многими тяжелыми металлами:

  • Классическая реакция с ионами Pb2+ . Образуется черный осадок сульфида серы :
  • С ионами Cu 2+ , Fe 2+ , Ni 2+ , Cu 2+ , Pb 2+ , Hg 2+ , Ag + и ионами многих других металлов тоже образуются осадки черного цвета .
  • С ионом Zn 2+ образуется белый осадок (один из немногих нечерных нерастворимых сульфидов):

Так как сера в сульфид-ионе в низшей степени окисления, она может окислиться. При действии сильных окислителей на сульфиды они окисляются до сульфатов (как правило). Классическая ЕГЭ-шная реакция, цитата из С2: «…черный осадок побелел после обработки его пероксидом водорода… ». Речь идет о
черном осадке сульфида свинца ( PbS ). Пероксид водорода H 2 O 2 (сильный окислитель) превращает черный сульфид свинца в белый (тоже нерастворимый) сульфат свинца ( PbSO 4 ):

Степень окисления + 4:

встречается в оксиде серы ( IV ) (сернистом газе – SO 2 ), в соответствующей этому оксиду кислоте – сернистой ( H 2 SO 3 , существующей только в растворе) и в солях сернистой кислоты – сульфИТах и гидросульфИТах.

Сернистый газ ( SO 2 ) – бесцветный газ с резким запахом (по легендам – запахом ада). Его можно почувствовать чиркнув спичку. Образуется при сжигании серы, сероводородов, сульфидов, серосодержащих органических веществ. Классическое школьное уточнение: « обесцвечивает раствор фуксина и фиолетовые чернила », при этом совсем не обязательно знать, что такое фуксин, и какие реакции протекают. Просто хорошо бы запомнить эту формулировку.

Так как является кислотным оксидом, реагирует с растворами щелочей. (формулировка из задания ЕГЭ: «…выделившийся газ с резким запахом был поглощен раствором щелочи…» ). Образуются соли сернистой кислоты – сульфиты:

СульфИТ-ионы и гидросульфИТ-ионы в растворе можно обнаружить добавлением сильной кислоты. При этом из раствора сульфита (гидросульфита) вытесняется сернистая кислота: H 2 SO 3 , которая не стабильная, поэтому быстро разлагается на воду и соответствующий оксид ( SO 2 ). То есть, если совсем коротко: при действии на сульфиты и гидросульфиты кислот выделяется SO 2 – газ с резким запахом (обесцвечивающий раствор фуксина и фиолетовые чернила):

Можно (и грамотнее) записать сразу:

Степень окисления +6

встречается в серном ангидриде (оксиде серы( VI ) – SO 3 ), в соответствующей ему серной кислоте ( H 2 SO 4 ) и в ее солях, сульфАТах.

Серный ангидрид ( SO 3 ) и серная кислота( H 2 SO 4 ) содержат серу в высшей степени окисления, поэтому являются сильными окислителями.

Сульфаты в растворе определяются добавлением катионов бария ( Ba 2+ ). Сульфат-ион с катионом бария образует белый осадок ( нерастворимый в кислотах ):

Сокращенное ионное уравнение: Ва 2+ + S O 4 2- → BaS O 4

CO 3 2-

карбонат-ион и HCO 3 — – гидрокарбонат-ион

являются анионом слабой, нестабильной, существующей только в растворе, угольной кислоты. Поэтому она легко вытесняется сильными кислотами из растворов солей (карбонатов и гидрокарбонатов).

Вытесняется и тут же распадается на воду и углекислый газ.

При действии кислот на карбонаты выделяется бесцветный газ без вкуса и запаха :

Можно (и грамотнее) записать сразу: K 2 CO 3 + 2 HCl → 2 KCl + CO 2 ↑ + H 2 O

Эта качественная реакция вам хорошо известна, вы наверняка проводили ее у себя дома. Добавим уксус к соде, и как раз будет выделяться газ, в чем можно убедиться если поднести спичку, она погаснет, так как CO 2 не поддерживает горения:

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

Выделившийся углекислый газ может быть поглощен раствором щелочи:

В связи со способностью поглощаться щелочами для описания углекислого газа часто встречается следующая формулировка: «… газ, при пропускании его через известковую воду, вызвал ее помутнение… ». Известковая вода – это профильтрованный раствор гидроксида кальция (гидроксид кальция полностью не растворяется в воде, образуется взвесь, и чтобы получить прозрачный раствор – его фильтруют, для очищения от не растворившихся частиц гидроксида кальция). При взаимодействии гидроксида кальция с углекислым газом образуется нерастворимый карбонат кальция, который и обеспечивает мутность:

PO 4 3-

– анион ортофосфорной кислоты (H 3 PO 4 ). В растворе его можно определить добавлением катионов серебра , при этом выпадает интенсивно-желтый осадок :

Сокращенное ионное уравнение: 3 Ag + + PO 4 3- → Ag 3 PO 4

SiO 3 2-

– анион кремниевой кислоты ( H 2 SiO 3 ) , которая являясь слабым электролитом, вытесняется из растворов ее солей. Кроме того, кремниевая кислота малорастврима в воде, поэтому в момент вытеснения ее из раствора соли, появляется гелеобразный осадок – это и будет H 2 SiO 3 :

Кремниевая кислота настолько слабая, что вытесняется даже угольной:

– оксид азота ( VI ).

Ядовитый газ с неприятным запахом бурого цвета.

В ЕГЭ его обычно именно так и обзывают – бурый газ .

Химически очень активное вещество:

Качественные уравнения реакций в молекулярном ионном и сокращенном ионном виде

  • при взаимодействии не очень активных металлов с HNO 3 концентрированной;
  • при разложении нитратов этих металлов.

В реакции с водой диспропорционируется, образуя азотную и азотистую кислоты:

Похожая реакция диспропорционирования происходит при растворении NO 2 в щелочах (образуются не кислоты, а соли этих кислот, нитраты и нитриты соответственно):

В присутствии избытка кислорода реакция идет без образования азотистой кислоты (диспропорционирования не происходит):

OH —

Наличие в растворе ионов OH — указывает на щелочную реакцию среды ( pH >7).

Определить pH можно с помощью индикаторов.

Окраски индикаторов в разных средах указаны в пункте про ион H + . Щелочную среду имеют не только щелочи, но и растворы аммиака и аминов, растворы солей, образованных сильными основаниями и слабыми кислотами.

Если нужно определить щелочь, то к раствору надо добавить соль металла, образующего слабое основание. Щелочь с такой солью даст осадок гидроксида металла:

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

📸 Видео

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Реакции ионного обменаСкачать

Реакции ионного обмена

РЕАКЦИИ ИОННОГО ОБМЕНА и условия их протекания | Как составлять молекулярные и ионные уравненияСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА и условия их протекания | Как составлять молекулярные и ионные уравнения

Реакция ионного обмена. Полное и сокращенное ионное уравнение. Практика. Видеоурок 39. Химия 9 классСкачать

Реакция ионного обмена. Полное и сокращенное ионное уравнение. Практика. Видеоурок 39. Химия 9 класс

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических РеакцийСкачать

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических Реакций

Ионные уравнения реакций. Составляем полные и сокращенные ионные уравнения. Часть 1.Скачать

Ионные уравнения реакций. Составляем полные и сокращенные ионные уравнения. Часть 1.

Реакции ионного обмена. Все типы №14Скачать

Реакции ионного обмена. Все типы №14

Гидролиз солей. 9 класс.Скачать

Гидролиз солей. 9 класс.

Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать

Электролитическая диссоциация кислот, оснований и солей. 9 класс.

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии
Поделиться или сохранить к себе: