Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

Видео:Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Решение неравенств с комплексными переменными

Рассмотрим задачи на нахождение областей в комплексной плоскости, заданных неравенствами. Чтобы решить данные неравенства с комплексными числами, вначале необходимо перейти к декартовым координатам, т.е. перейти к действительному представлению.

Чтобы представить комплексное число в действительной форме, нужно заменить комплексную переменную z действительными переменными x и y, а именно z = x + iy, где
x = Re(z), y = Im(z).

Пример 1. Найти на комплексной плоскости множество точек, удовлетворяющих неравенству

Видео:Изобразить область на комплексной плоскостиСкачать

Изобразить область на комплексной плоскости

Множество точек. Изображение некоторых множеств точек на плоскости.

Представим на координатной плоскости множество точек, удовлетворяющих условию х = 5 и х = -4,

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

В первом случае прямые параллельны оси ординат, во втором – абсцисс.

На прямой может быть расположено неограниченное количество точек. И у всего этого множества точек, координаты удовлетворяют условиям х = 5 и х = -4; у = -4 и у = 1.

На координатной прямой неравенству х 3. Проанализируем, что это за точки:

множество точек, абсцисса которых больше или равна 3

— точки, лежащие правее прямой х = 3 и на прямой.

Алгоритм построения будет иметь вид:

— строим в координатной плоскости прямую: х = 3;

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

— определяем, где будут находиться точки, абсцисса которых больше 3; ответ – правее;

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

— множество всех точек удовлетворяющих условию х > 3 покажем при помощи штриховки;

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

х > 3 задает полуплоскость, находящаяся правее прямой х = 3 и все точки этой прямой. Прямую изображаем одной цельной линией, этим указываем, что все точки расположенные на прямой так же включены во множество.

Представим множество точек, удовлетворяющих условию у 1.

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

Постройте множество точек у > 1. По аналогии, точкам этого множества присуще свойство — у них ордината больше 1.

Следовательно, они будут находиться выше прямой у = 1. В соответствии со знаком неравенства точки прямой у = 1 не удовлетворяют условию y > 1. Графически мы это покажем, изобразив прямую у = 1 пунктиром.

Представим множество точек, соответствующих условию у > 1 так:

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

Представим на координатной плоскости множества точек, соответствующих условию: -2 ≤ х ≤ 2.

Видео:Построение областей по заданным условиямСкачать

Построение областей по заданным условиям

Электронная библиотека

Областью в комплексной плоскости называется множество D точек этой плоскости, обладающее свойствами:

1) открытости – вместе с точкой из D этому множеству принадлежит и достаточно малая окрестность с центром в этой точке;

2) связности – любые две точки D можно соединить ломаной, целиком состоящей из точек D.

Примером области могут служить окрестности точек на комплексной плоскости. Под e-окрестностью точки z0 понимают открытый круг радиуса e с центром в этой точке: |z z0| 2 + (y – 1) 2 = e 2 – окружность радиуса e с центром в точке х = 0, у = 1 комплексной плоскости.

Область с присоединенной к ней границей называют замкнутой и обозначают D. Будем в дальнейшем предполагать, что граница области состоит из конечного числа замкнутых линий, разрезов (дуг) и точек. Линии и разрезы, входящие в состав границы будем предполагать всегда кусочно-гладкими.

Область называется односвязной, если граница состоит из одной связной линии. Область называется многосвязной, если граница области состоит из нескольких связных частей, например: двухсвязной, трехсвязной и т.д. – по числу не связных между собой частей границы. На рис. 2.2,б – пример двухсвязной области.

Обход односвязной области считается положительным, если она остается по левую руку (контур обходится против хода часовой стрелки). На рис. 2.2,б сделан разрез l, а обход области изображен положительным (область в результате разреза стала односвязной).

Указать, является ли каждая из этих областей открытой или замкнутой, ограниченной или неограниченной, односвязной или многосвязной.

а) поэтому получим: . Область (рис. 2.3) – замкнутая, ограниченная, односвязная.

б) и – лучи, выходящие из начала координат (рис. 2.4). Все точки, удовлетворяющие неравенству б) лежат внутри угла, образованного этими лучами, и на сторонах этого угла. Следовательно, область замкнутая, неограниченная, односвязная.

Неравенство означает, что расстояние каждой точки z от точки больше 1, но меньше 2. Поэтому областью есть кольцо (его внутренность), ограниченное концентрическими окружностями с центром в точке . Область – открытая, ограниченная, двухсвязная (рис. 2.5).

г) Неравенство равносильно или

или, возведя в квадрат обе части, получим:

х 2 + у 2 – 2у + 1 2 + у 2 + 2у + 1.

Отсюда: – верхняя полуплоскость (рис.

Изобразите на комплексной плоскости множества точек задаваемые уравнениями и неравенствами

Вывод: область у>0 – открытая, неограниченная, односвязная (рис. 2.4).

Определение. Кривая называется непрерывной, если она может быть задана параметрическими уравнениями:

в которых – непрерывные функции на отрезке .

Например, окружность ; дуга окружности

; дуга параболы – непрерывные кривые; гипербола не является непрерывной, так как функции эти при и имеют точки разрыва.

С помощью комплексного переменного параметрические уравнения кривой (2.18) можно записать в виде одного уравнения:

Например, уравнение эллипса с полуосями a и b можно записать:

уравнение окружности радиуса R

уравнение окружности с центром в точке запишется так:

Задачи для упражнений

1) Построить в комплексной плоскости линии, точки которых удовлетворяют уравнениям:

а) б) в) г) д) е) ж) ; з)

2) Построить на комплексной плоскости z области, заданные условиями:

Указать, является ли каждая из этих областей открытой или замкнутой, ограниченной или нет, односвязной или многосвязной.

3) Какие кривые определяются следующими уравнениями:

Ответы: а) б) в) г) д)

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

🔍 Видео

Как найти множество точек комплексной плоскости?Скачать

Как найти множество точек комплексной плоскости?

Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Линии и области на комплексной плоскостиСкачать

Линии и области на комплексной плоскости

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Как изобразить множество решений системы неравенствСкачать

Как изобразить множество решений системы неравенств

Изобразить на плоскости множество точек, удовлетворяющих уравнениюСкачать

Изобразить на плоскости множество точек, удовлетворяющих уравнению

Изображение множества точек на координатной плоскости, удовлетворяющих уравнению.Скачать

Изображение множества точек на координатной плоскости, удовлетворяющих уравнению.

Область на комплексной плоскости arg z = pi/2Скачать

Область на комплексной плоскости  arg z = pi/2

10 класс, 33 урок, Комплексные числа и координатная плоскостьСкачать

10 класс, 33 урок, Комплексные числа и координатная плоскость

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.

Тригонометрическая форма комплексного числаСкачать

Тригонометрическая форма комплексного числа

Математика без Ху!ни. ТФКП-1. Геометрическая интерпретация неравенств.Скачать

Математика без Ху!ни. ТФКП-1. Геометрическая интерпретация неравенств.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

487 Алгебра 9 класс. Изобразите на координатной плоскости множество решенийСкачать

487 Алгебра 9 класс. Изобразите на координатной плоскости множество решений

Множества на комплексной плоскости. Связное множество. Односвязная область. Граница. Круг сходимостиСкачать

Множества на комплексной плоскости. Связное множество. Односвязная область. Граница. Круг сходимости

Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

✓ Комплексные числа. Введение | Ботай со мной #039 | Борис ТрушинСкачать

✓ Комплексные числа. Введение | Ботай со мной #039 | Борис Трушин
Поделиться или сохранить к себе: