Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Уравнения Максвелла для электромагнитного поля — основные законы электродинамики

Система уравнений Максвелла обязана своим названием и появлением Джеймсу Клерку Максвеллу, сформулировавшему и записавшему данные уравнения в конце 19 века.

Максвелл Джемс Кларк (1831 — 1879) был известным британским физиком и математиком, профессором Кембриджского университета в Англии.

Он практически объединил в своих уравнениях все накопленные к тому времени экспериментально полученные результаты касательно электричества и магнетизма и придал законам электромагнетизма четкую математическую форму. Основные законы электродинамики (уравнения Максвелла) были сформулированы в 1873 году.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Максвелл развил учение Фарадея об электромагнитном поле в стройную математическую теорию, из которой вытекала возможность волнового распространения электромагнитных процессов. При этом оказалось, что скорость распространения электромагнитных процессов равна скорости света (величина которой была уже известна из опытов).

Это совпадение послужило для Максвелла основанием к тому, чтобы высказать идею об общей природе электромагнитных и световых явлений, т.е. об электромагнитной природе света.

Созданная Джеймсом Максвеллом теория электромагнитных явлений нашла первое подтверждение в опытах Герца, впервые получившего электромагнитные волны.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

В итоге эти уравнения сыграли главную роль в формировании точных представлений классической электродинамики. Уравнения Максвелла могут быть записаны в дифференциальной или интегральной форме. Практически они описывают сухим языком математики электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и в сплошных средах. К данным уравнениям можно добавить выражение для силы Лоренца, в этом случае мы получим полную систему уравнений классической электродинамики.

Чтобы понимать некоторые математические символы, использующиеся в дифференциальных формах уравнений Максвелла, для начала определим такую занятную вещь, как оператор набла.

Оператор набла (или оператор Гамильтона) — это векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Для нашего реального пространства, которое является трехмерным, адекватна прямоугольная система координат, для которой оператор набла определяется следующим образом:

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

где i, j и k – единичные координатные векторы

Оператор набла, будучи применен к полю тем или иным математическим образом, дает три возможные комбинации. Данные комбинации именуются:

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Градиент — вектор, своим направлением указывающий направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный скорости роста этой величины в этом направлении.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Дивергенция (расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть, в результате применения к векторному полю операции дифференцирования получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Ротор (вихрь, ротация) — векторный дифференциальный оператор над векторным полем.

Теперь рассмотрим непосредственно уравнения Максвелла в интегральной (слева) и дифференциальной (справа) формах, содержащие в себе основные законы электрического и магнитного полей, включая электромагнитную индукцию.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Интегральная форма: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Дифференциальная форма: при всяком изменении магнитного поля возникает вихревое электрическое поле, пропорциональное скорости изменения индукции магнитного поля.

Физический смысл: всякое изменение магнитного поля во времени вызывает появление вихревого электрического поля.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Интегральная форма: поток индукции магнитного поля через произвольную замкнутую поверхность равен нулю. Это означает, что в природе нет магнитных зарядов.

Дифференциальная форма: поток силовых линий индукции магнитного поля из бесконечного элементарного объёма равен нулю, так как поле вихревое.

Физический смысл: источники магнитного поля в виде магнитных зарядов в природе отсутствуют.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Интегральная форма: циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру прямо пропорциональна суммарному току, пересекающему поверхность, охватываемую этим контуром.

Дифференциальная форма: вокруг любого проводника с током и вокруг любого переменного электрического поля существует вихревое магнитное поле.

Физический смысл: протекание тока проводимости по проводникам и изменения электрического поля во времени приводят к появлению вихревого магнитного поля.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Интегральная форма: поток вектора электростатической индукции через произвольную замкнутую поверхность, охватывающую заряды, прямо пропорционален суммарному заряду, расположенному внутри этой поверхности.

Дифференциальная форма: поток вектора индукции электростатического поля из бесконечного элементарного объема прямо пропорционален суммарному заряду, находящемуся в этом объёме.

Физический смысл: источником электрического поля является электрический заряд.

Система данных уравнений может быть дополнена системой так называемых материальных уравнений, которые характеризуют свойства заполняющей пространство материальной среды:

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Видео:Электромагнитные волны и уравнения Максвелла — Эмиль АхмедовСкачать

Электромагнитные волны и уравнения Максвелла — Эмиль Ахмедов

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Видео:Раскрытие тайн электромагнитной волныСкачать

Раскрытие тайн электромагнитной волны

20.1. Волновое уравнение для электромагнитной волны.

Основные свойства электромагнитной волны: скорость, поперенность, связь между ? и я

Из уравнений Максвелла следует, что электромагнитное поле способно существовать самостоятельно — без электрических зарядов и токов. Взаимосвязанные колебания (изменения) электрического и магнитного полей, составляющих единое электромагнитное поле, называются электромагнитными колебаниями.

Электромагнитные волны — это электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. В вакууме они всегда распространяются со скоростью, равной скорости света с.

Именно присутствие тока смещения db/dt наряду с величиной dB/dt и означает возможность появления электромагнитных волн. Всякое изменение во времени магнитного поля возбуждает поле электрическое, изменение же поля электрического в свою очередь возбуждает магнитное поле. За счет непрерывного взаимопревращения электромагнитное возмущение будет распространяться в пространстве.

Рассмотрим однородную изотропную нейтральную непроводящую среду Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

где ?0 и ц0 — соответственно электрическая и магнитная постоянные; ? и р — соответственно диэлектрическая и магнитная проницаемости среды. Используя уравнения Максвелла, можно показать, что волновые уравнения для векторов Е п Н имеют вид

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

где V = Д = —у+—т + тт — оператор Лапласа. дх ду dz

Перечислим основные свойства электромагнитных волн, распространяющихся в изотропной нейтральной непроводящей неферромагнитной среде.

1. Скоростью распространения и электромагнитной волны в среде называется фазовая скорость (скорость распространения фазы колебаний). По закону Максвелла

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

где с = /^?0|i0 — скорость распространения электромагнитной волны в вакууме. Поскольку ?р > 1, то v лу — круговая (циклическая) частота этих колебаний;

к — (.o/v — волновое число; а — начальная фаза колебаний волны при / = О их = 0. Знак «минус» в скобках уравнений (20.5) и (20.5а) означает, что волна распространяется в положительном направлении оси X. Отметим, что амплитуды электрического и магнитного полей Ет и Нт связаны соотношением (20.4).

Расстояние, на которое распространяется электромагнитная волна в среде за время одного периода колебаний Т, называется длиной волны и определяется как Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Связь длины электромагнитной волны с периодом Т и частотой v колебаний в вакууме выражается так:

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Волновые уравнения плоской гармонической электромагнитной волны,

распространяющейся вдоль оси X, записываются как

Видео:Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Скорость распространения электромагнитных волн

Вы будете перенаправлены на Автор24

Видео:Билет №34 "Электромагнитные волны"Скачать

Билет №34 "Электромагнитные волны"

Эмпирический способ нахождения скорости электромагнитных волн

Скорость распространения электромагнитных волн эмпирически определяют, изучая стоячие волны, которые получают, например, в цепи, которая изображена на рис. 1, где выход генератора соединен с проводами линии через конденсаторы. Когда генератор работает, между проводами появляются колебания напряжения, а, значит, существуют колебания электрического поля, то есть возникает электромагнитная волна.

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Для понимания об интенсивности колебаний в различных точках линии включают лампы накаливания. В таких опытах можно показать, что стоячие волны в линии появляются только при определенной частоте генератора, когда она совпадает с частотой собственных колебаний линии.

Измеряя расстояния ($triangle x$) между соседними узлами или пучностями в стоячей волне, определяется $frac$ длины волны ($lambda $). При этом, известно, что:

где $nu $ — частота генератора. Измерив $nu $, легко найти скорость распространения электромагнитной волны. Опыты показали, что скорость электромагнитной волны ($v$) совпадает со скоростью света. В воздухе она приблизительно равна $v=c=3cdot ^8frac.$

Видео:Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"

Вывод скорости распространения электромагнитных волн из теории Максвелла

Раньше, чем электромагнитные волны были получены в экспериментах, Максвелл вычислил скорость этих волн, используя свою теорию поля. Рассмотри плоскую электромагнитную волну (одномерная задача, означающая, что $overrightarrowи overrightarrowзависят только от одной координаты, допустим x$), которая распространяется в однородной среде ($j_x=j_y=j_z=0, при varepsilon =const, mu =const$). В таком случае система уравнений Максвелла в скалярном виде будет записана как:

Исключим из уравнений Максвелла электрическое поле. С этой целью используем формулу, связывающую индукцию магнитного поля и его напряженность:

Готовые работы на аналогичную тему

и продифференцируем второе уравнение системы (2) по времени, получим:

Первое уравнение системы (2) продифференцируем по $x$, и используем уравнение:

в результате имеем:

Сравним уравнения (4) и (6), запишем:

Уравнение (7) есть волновое уравнение, следовательно, коэффициент, который стоит при $frac<^2H>$ — квадрат скорости распространения электромагнитной волны:

$c$- скорость света. В вакууме скорость электромагнитных волн будет выражена как:

Теория Максвелла предсказала, что скорость распространения электромагнитных волн в вакууме равна скорости света — этот факт доказывает, что свет имеет электромагнитную природу.

Основные процессы при распространении волн в проводах происходят не внутри проводов, а в окружающей их среде. Следовательно, если среда вне провода изменится, то скорость электромагнитных волн будет другой, длина волны при неизменной частоте генератора станет другой.

В справедливости формулы (8) легко убедиться на опыте, если часть двухпроводной линии, которая первоначально была в воздухе погрузить в воду. Для воды $mu approx 1, varepsilon >1,$ следовательно, скорость электромагнитных волн в воде меньше, чем в воздухе, значит расстояние между соседними узлами (пучностями) станет меньше.

Следует учитывать, что $mu и varepsilon $ зависят от частоты. Поэтому при нахождении скорости применяя формулу (8) следует использовать их значения, соответствующие частоте колебаний в электромагнитной волне.

Задание: Параллельные провода (рис.2) находятся в некотором веществе, магнитная проницаемость которого равна $1$, диэлектрическая проницаемость не равна $1$. Они посредством индуктивности соединены с генератором. При высокой частоте колебаний $nu $ в системе устанавливаются стоячие электромагнитные волны. Вдоль проводов перемещают газоразрядную трубку $А$, по интенсивности ее свечения определили положения пучностей напряженности электрического поля, расстояние между которыми оказались равны $triangle x$. Какова диэлектрическая проницаемость вещества?

Из уравнения максвелла следует что скорость распространения электромагнитных волн в частности

Решение:

Стоячие электромагнитные волны появляются как результат интерференции волн, которые распространяются по двухпроводной линии от генератора в прямом направлении с волнами, которые отражаются концами линии. При высокой частоте электромагнитных колебаний основные процессы, которые связаны с распространением волн, происходят в среде, которая окружает провода.

В соответствии с теорией Максвелла скорость электромагнитных волн в среде равна:

По условию задачи для данного вещества $mu =1$, диэлектрическая проницаемость выразится из (1.1) как:

Скорость электромагнитных волн связана с длинной волны как:

[v=lambda nu left(1.3right).]

Расстояние между соседними пучностями в стоячей волне равно половине длины волны ($triangle x=fraclambda $), в таком случае имеем:

Задание: Какова скорость распространения электромагнитной волны в концентрическом кабеле, в котором пространство между внешним и внутренним проводами заполнено диэлектриком с проницаемостью $varepsilon ?$ Считайте, что потерями в кабеле можно пренебречь.

Решение:

Согласно теории Максвелла, скорость распространения электромагнитных волн в веществе равна:

Магнитную проницаемость среды можно считать равной единице, тогда выражение (2.1) перепишем в виде:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 02.03.2022

🔥 Видео

О чем говорят уравнения Максвелла? Видео 1/2Скачать

О чем говорят уравнения Максвелла? Видео 1/2

Вывод уравнения электромагнитной волныСкачать

Вывод уравнения электромагнитной волны

Уравнения Максвелла и соответствующие уравнения Волновой МоделиСкачать

Уравнения Максвелла и соответствующие уравнения Волновой Модели

Физика 11 класс (Урок№10 - Электромагнитные волны.)Скачать

Физика 11 класс (Урок№10 - Электромагнитные волны.)

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

Уравнения Максвелла 2021Скачать

Уравнения Максвелла 2021

Лекция №9. Уравнения МаксвеллаСкачать

Лекция №9. Уравнения Максвелла

78. Электромагнитные волныСкачать

78. Электромагнитные волны

60. Уравнения МаксвеллаСкачать

60. Уравнения Максвелла

Урок 384. Излучение электромагнитных волн.Скачать

Урок 384. Излучение электромагнитных волн.

Эл. маг. волны против уравнений Максвелла. Часть 1.Скачать

Эл. маг. волны против уравнений Максвелла. Часть 1.

Эл. маг. волны против уравнений Максвелла.Все части.Скачать

Эл. маг. волны против уравнений Максвелла.Все части.

Лекция №14 "Электричество и магнетизм" (Попов П.В.): Уравнения МаксвеллаСкачать

Лекция №14 "Электричество и магнетизм" (Попов П.В.): Уравнения Максвелла

Теория поля 6. Вторая пара уравнений Максвелла. Законы сохранения ЭМ поля.Скачать

Теория поля 6. Вторая пара уравнений Максвелла. Законы сохранения ЭМ поля.

7. Ограниченность уравнений Максвелла. Уточнения уравнений электродинамики. Ацюковский В.А.Скачать

7. Ограниченность уравнений Максвелла. Уточнения уравнений электродинамики. Ацюковский В.А.
Поделиться или сохранить к себе: