Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. Индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
aх 2 + bx = c, a>0 (1)
В уравнении (1) коэффициенты, кроме a, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические уравнения». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в.
«Обезьянок резвых стая
Всласть поевши, развлекалась
Их в квадрате часть восьмая
На поляне забавлялась.
А двенадцать по лианам
Стали прыгать, повисая
Сколько ж было обезьянок
Ты скажи мне, в этой стае?»
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений. Соответствующее задаче 13 уравнение:
2 + 12 = x
Бхаскара пишет под видом x 2 – 64x = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:
x 2 – 64x + 32 2 = -768 + 1024,
Квадратные уравнения у ал-Хорезми.
В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корням», т. е. ax 2 = bx.
2) «Квадраты равны числу», т. е. ax 2 = c.
3) «Корни равны числу», т. е. ax = c.
4) «Квадраты и числа равны корням», т. е. ax 2 + c = bx.
5) «Квадраты и корни равны числу», т. е. ax 2 + bx = c.
6) «Корни и числа равны квадратам», т. е. bx + c = ax 2 .
Формулы решения квадратных уравнений по ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:
при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
- О теореме Виета.
- Математические уравнения и их использование в решении задач
- Математические уравнения и их использование в решении задач
- Работа МАН «Решение уравнений с параметрами»
- ВВЕДЕНИЕ
- 2.1. История возникновения уравнений с параметром
- 2.2. Теорема Виета
- 2.3. Аналитический метод решения задач с параметрами.
- 2.3.1. Линейные уравнения с параметрами
- 2.3.2. Квадратные уравнения, содержащие параметр
- 🎥 Видео
Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать
О теореме Виета.
Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B + D, умноженное на A минус A 2 , равно BD, то А равно В и равно D».
Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означала у него неизвестное (наше х), гласные же B, D – коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:
Если имеет место
Т. е. x 2 — (a –b)x + ab =0,
Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Математические уравнения и их использование в решении задач
Видео:Уравнения с параметром. Алгебра, 8 классСкачать
Математические уравнения и их использование в решении задач
Глава 1. История возникновения уравнений
Глава 2. Решения уравнений и способы их упрощения
Глава 3. Использование уравнений при решении задач
Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.
Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).
Глава 1. История возникновения уравнений
Алгебра как искусство решать уравнения зародились очень давно в связи с потребностью практики, в результате поиска общих приёмов решения однотипных задач. Самые ранние дошедшие до нас рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приёмы решения линейных уравнений. Слово «алгебра» возникло после появления тракта «Китаб аль-джебр валь-мукабала» хорезмского математика и астронома Мухамеда Бен Муса аль Хорезми. Термин «аль-джерб», взятый из названия этой книги, в дальнейшем стал употребляться как алгебра.
Знак равенства ввел в 1556 году английский математик Рекорд, который объяснил это так, что ничто не может быть более равным, чем два параллельных отрезка.
Франсуам Виемт (фр. Franзois Viиte, seigneur de la Bigotiиre; 1540 — 13 декабря 1603) — выдающийся французский математик, один из основоположников алгебры
Создателем современной буквенной символики является французский математик Франсуа Виет (1540 — 1603). До XVI в. изложение алгебры велось в основном словесно. Буквенные обозначения и математические знаки появлялись постепенно.
Знаки + — впервые встречаются у немецких алгебраистов XVI в. Несколько позже вводится знак * для умножения. Знак деления (:) был введён лишь в XVII в. Решительный шаг в использовании алгебраической символики был сделан в XVI в., когда французский математик Франсуа Виет (1540-1603) и его современники стали применять буквы для обозначения не только неизвестных (что делалось и ранее), но и любых чисел. Однако эта символика ещё отличалась от современной. Так, Виет для обозначения Неизвестного числа применял букву N (Numerus-число), для квадрата и куба неизвестного буквы Q (Quadratus — квадрат) и C (Cubus — куб). Например, запись уравнения X в кубе, минус 8X в квадрате, плюс 16X, равно 40 у Виета выглядела бы так: 1C-8Q+16N aequ. 40 (aequali — равно). Виет делит изложение на две части: общие законы и их конкретно-числовые реализации. То есть он сначала решает задачи в общем виде, и только потом приводит числовые примеры. В общей части он обозначает буквами не только неизвестные, что уже встречалось ранее, но и все прочие параметры, для которых он придумал термин «коэффициенты» (буквально: содействующие). Виет использовал для этого только заглавные буквы: гласные для неизвестных, согласные для коэффициентов. Виет свободно применяет разнообразные алгебраические преобразования. Например, замену переменных или смену знака выражения при переносе его в другую часть уравнения.
Новая система позволила просто, ясно и компактно описать общие законы арифметики и алгоритмы. Символика Виета была сразу же оценена учёными разных стран, которые приступили к её совершенствованию. Диофант (не ранее III века н.э.) — единственный известный нам древнегреческий математик, который занимался алгеброй.
Он решал различные уравнения, особое внимание уделял неопределенным уравнениям, теория которых называется теперь «диофантовым анализом». У Диофанта была попытка ввести буквенную символику.
Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» и обозначает буквой т, квадрат неизвестной — символом дн (сокращение от дэнбмйт — «степень»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней. Знака сложения у Диофанта нет: он просто пишет рядом положительные члены, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент
Эваримст Галуам (фр. Йvariste Galois;25 октября 1811, 25 октября 1811, Бур-ля-Рен, О-де-Сен, Франция — 31 мая 1832, ,Франция) — выдающийся французский математик, основатель современной высшей алгебры.
Эврист Галуа (1811 — 1832) — этот гениальный математик погиб на дуэли, подстроенной его врагами. В ночь перед дуэлью он написал письмо, в котором изложил свои результаты, давшей начало целой науке — «теории Галуа»
Нильс Хенрик Абель (1802 — 1829) внес важный вклад в теорию уравнений. В 1824 году он опубликовал доказательство неразрешимости в радикалах общего буквенного выражения пятой степени.
«Абель оставил математикам столь богатое наследие, что им будет чем заниматься в ближайшие 150 лет» (Шарль Эрмит). Нильс Хенрик Абель (норв. Niels Henrik Abel; 5 августа 1802, Фингё — 6 апреля 1829, Фроланд близ Арендаля) — знаменитый норвежский математик
1.Из истории возникновения уравнений.
Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.
2. Содержание и роль линии уравнений в современном школьном курсе математики
Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.
Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.
Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий.
Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования:
1) уравнение как средство решения текстовых задач;
2) уравнение как особого рода формула, служащая в алгебре объектом изучения;
3) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.
Каждое из этих представлений оказалось в том или ином отношении полезным.
Таким образом, уравнение как общематематическое понятие много аспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.
Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно — методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики. Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.
а) Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.
В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.
б) Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений
в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики
Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k — натуральное число, большее 1) и ax=b.
Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.
3. О трактовке понятия уравнения.
Понятие уравнения относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое с формальной точки зрения, и доступное для учащихся, приступающих к овладению школьным курсом алгебры.
Логико-математическое определение уравнения можно привести в такой форме: пусть на множестве М зафиксирован набор алгебраических операций, х — переменная на М; тогда уравнением на множестве М относительно х называется предикат вида а(х)=b (х), где а(х) и b(х)-термы относительно заданных операций, в запись которых входит символ х. Аналогично определяется уравнение от двух переменных и т. д.
Принятым в логике терминам «терм» и «предикат» соответствуют термины школьной математики «выражение» и «предложение с переменной». Поэтому наиболее близко к приведенному формальному определению следующее определение: «Предложение с переменной, имеющее вид равенства между двумя выражениями с этой переменной, называется уравнением»
Анализируя приведенное математическое определение уравнения, можно выделить в нем два компонента. Первый состоит в том, что уравнение — это особого рода предикат. Второй уточняет, какого именно рода: это равенство, соединяющее два терма, причем термы также имеют определенный специальный вид. При изучении материала, относящегося к линии уравнений и неравенств, оба компонента играют значительную роль.
Первый — смысловой компонент, важен прежде всего для уяснения понятия корня уравнения. Кроме того, смысловой компонент почти всегда используется при обосновании корректности того или иного преобразования уравнения.
Второй компонент относится к формальным особенностям записи, изображающей уравнение. Назовем этот компонент знаковым. Он важен в случаях, когда запись уравнения подвергается различным преобразованиям: зачастую такие преобразования производятся чисто механически, без обращения к их смыслу.
Возможность использования в школьном обучении подхода к понятию уравнения, включающего явно упоминание о предложении с переменной, зависит от присутствия этого термина и терминов «истина», «ложь» в обязательном материале курса математики. Если их нет, то привести подобное определение невозможно. В этом случае смысловой компонент понятия уравнения переходит в определение другого понятия, тесно связанного с понятием уравнения, — корня уравнения. Получается система из двух терминов: термин «уравнение» несет в себе признаки знакового компонента, а термин «корень уравнения» учитывает смысловой компонент. Такое определение приведено, например, в учебнике Колмогорова А. Н.
Часто, особенно в начале систематического курса алгебры, понятие уравнения вводится посредством выделения его из алгебраического метода решения задач. В этом случае независимо от того, каков текст определения, существенным оказывается подход к понятию уравнения, при котором оно представляет косвенную форму задания некоторого неизвестного числа, имеющего в соответствии с сюжетом задачи конкретную интерпретацию. Например, понятие уравнения вводится на материале текстовой задачи: «Конверт с новогодней открыткой стоит 170сум. Конверт дешевле открытки на 70 сумк. Найти стоимость открытки». Переход к определению уравнения осуществляется на основе анализа некоторых формальных особенностей записи: х+(х-70)= 170, выражающей содержание данной задачи в алгебраической форме. С помощью этого же сюжета вводится и понятие корня уравнения. Вот эти определения: «Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Корнем уравнения называется то значение неизвестного, при котором это уравнение обращается в верное равенство». Указанный способ введения понятия уравнения соответствует еще одному компоненту понятия уравнения — прикладному.
Еще один подход к определению понятия уравнения получается при сопоставлении области определения уравнения и множества его корней. Обычно множество корней уравнения — собственное подмножество его области определения. С другой стороны, при решении уравнений приходится использовать преобразования, которые опираются на тождества, т. е. на равенства, истинные на всей области определения. Выделенное здесь противопоставление тождества и уравнения может быть положено в основу определения уравнения: «Буквенное равенство, которое не обязательно превращается в верное численное равенство при допустимых наборах букв, называется уравнением»
Формирование понятия уравнения требует использования еще одного термина: «решить уравнение». Различные варианты его определения отличаются друг от друга, по существу, только наличием или отсутствием в них термина «множество».
Таким образом, при освоении понятия уравнения необходимо использовать термины «уравнение», «корень уравнения», «что значит решить уравнение». При этом наряду с компонентами понятия уравнения, входящими в текст определения, надо включать и все другие его компоненты по мере развертывания материала данной линии.
В определении понятия уравнения используется один из двух терминов: «переменная» или «неизвестное». Различие между ними состоит в том, что переменная пробегает ряд значений, не выделяя ни одного из них специально, а неизвестное представляет собой буквенное обозначение конкретного числа (поэтому этим термином удобно пользоваться при составлении уравнений по текстовым задачам). Вопросы, связанные с выбором одного их этих терминов для использования в школьной практике, в настоящее время еще нельзя считать окончательно решенными. Выбор того или иного из них влечет определенные различия в развертывании содержания линии уравнений и неравенств. Так, с термином «переменная» связана операция подстановки числа вместо буквы, поэтому в уравнение а(х) = b(х) можно подставлять вместо х конкретные числа и находить среди них корни. Термин же «неизвестное» обозначает фиксированное число; подставлять число на место буквы, обозначающей неизвестное, поэтому нелогично. Нахождение корней уравнения а(х) = b(х) с этой точки зрения должно осуществляться с помощью действий, при которых это равенство рассматривают как верное и пытаются привести его к виду х = х, где х — числовое выражение.
При описании методики мы будем пользоваться термином «неизвестное», который ближе, чем «переменная», связан с алгебраическим методом решения текстовых задач и тем самым с прикладной направленностью линии уравнений и неравенств.
Глава 2. Решения уравнений и способы их упрощения
Наука математика возникла на первых этапах развития человечества из его практических нужд и творческих потребностей. Герман Вейль писал: «Математика играет весьма существенную роль в формировании нашего духовного облика. Занятие математикой — подобно мифотворчеству, литературе или музыке — это одна из наиболее присущих человеку областей и его творческой деятельности, в которой проявляется его человеческая сущность, стремление к интеллектуальной сфере жизни, являющейся одним из проявлений мировой гармонии».
В настоящее время математика достигла своего расцвета, она является основой большинства современных наук, а ее приложения используются во всех областях человеческой деятельности.
Большим значением в практической математике является метод уравнений. С их помощью решаются множество различных задач смежных дисциплин и задач прикладного характера (экономические, транспортные, биохимические, астрономические, географические и многие другие)
Чтобы решить уравнение нужно совершить ряд алгебраических преобразований. В математике существует множество задач, которые решаются с помощью уравнений. Чтобы решить эти задачи, мы вспоминаем слова великого Ньютона, задачу нужно перевести с родного языка на язык алгебры.
Используя данный способ, мы сможем легко и быстро решить любую, на первый взгляд сколь угодно сложную, задачу.
Опираясь на данное изложение, мы хотели бы сказать, что современный мир — мир развития науки и техники, невозможен без знания и умения решать уравнения.
Уравнением с одним неизвестным называется запись вида, А (х)=В (х) — выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные, называемые параметрами.
Областью определения уравнения (иногда говорят — область допустимых значений неизвестного) называется множество всех значений х, при которых определены обе части уравнения.
Корнем или решением, уравнения называется значение неизвестного, при подстановке которого в уравнении получается верное числовое равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.
Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейные и квадратные уравнения, а также уравнения вида f (х)=а, где f — одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Например, корень уравнения х 3 =а равен, корень уравнения log 3х = а есть 3 а , а уравнение cos х = а решается по формуле х= arcos, а + 2Пп, где п=о, 1, 2,…Существует формула и для кубического уравнения, но его к простейшим не относят.
Так вот, главная задача при решении любого уравнения — свести его к простейшим.
Два основных способа упрощения уравнений — это замена переменной и разложение на множители.
Например, биквадратное уравнение х 4 +ах 2 +b=0 сводится к квадратному заменой y=х 2 , а тригонометрическое уравнение 2cos 2 х +cos х — 1= 0 — заменой y= cos х. вообще, если вы сумели записать уравнение в виде F (f (x))=0, сделайте замену y=f (x). Решить два уравнения, f (y)=0 и f (x)=y, почти всегда проще, чем одно данное.
Разложить уравнение на множители — значит представить его в виде f (x) . g (x)=0. Такое уравнение можно заменить совокупностью двух уравнений: f (x)=0 и g (x)=0. Множеством решений исходного уравнения будет объединение множеств решений этих двух более простых. Правда, здесь спрятана и одна из ловушек. При замене одного уравнения двумя может расшириться область определения задачи: первое уравнение определено на пересечении областей определения f и g, а совокупность двух уравнений — на объединении. Так, уравнение (х+1)=0 имеет только один корень (х=0), совокупность же уравнений =0 и х+1=0 — два (х=0 и х= -1).
Один корень легко угадать: х= -1.
Как найти остальные? Можно доказать, что если х0 — корень многочлена P (х), то это многочлен делится на х — х0, т. е.разлагается на множители, один из которых х — х0. Выполним это разложение — вынесем из левой части множитель х+1:
х 2 — 3х — 2=х 3 +х 2 — х 2 — 3х — 2= х 2 (х+1) — (х 2 +х) — 2х — 2= (х+1) (х 2 -х -2).
Обратим внимание на используемый при этом прием — прибавление и вычитание одного и того же выражения (…=х 2 — х…). Этот нехитрый, но очень полезный прием носит шутливое название «метод Тараса Бульбы» (вспомним: «Я тебя породил, я тебя и убью!»). Ну, а дальше остается решить квадратное уравнение.
Таковы главные способы упрощения. Однако догадаться какую именно замену следует применить или как разложить на множители конкретное уравнение, порой бывает очень трудно. Успех здесь зависит от знания стандартных формул, опыта, смекалки и в большой мере — от удачи.
Глава 3. Использование уравнений при решении задач
Язык алгебры — уравнения. «Чтобы решить вопрос, относящийся к числам или к отвлеченным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», — писал великий Ньютон в своем учебнике алгебры, озаглавленном «Всеобщая арифметика». Как именно выполняется такой перевод с родного языка на алгебраический, Ньютон показал на примерах. Вот один из них:
Видео:Уравнения с параметром. Алгебра 7 класс.Скачать
Работа МАН «Решение уравнений с параметрами»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
МАЛАЯ АКАДЕМИЯ НАУК УЧАЩЕЙСЯ МОЛОДЕЖИ
Отделение (номинация): математика
Решение уравнений с параметрами
Максютенко Наталья Сергеевна,
Стахановской СМГ №15 ,
специалист І категории
Видео:9 класс, 7 урок, Задачи с параметрамиСкачать
ВВЕДЕНИЕ
«Метод решения хорош,
если с самого начала мы можем предвидеть –
и далее подтвердить это, — что,
следуя этому методу, мы достигнем цели.»
В повседневной жизни мы очень часто сталкиваемся с понятием параметра: параметр загрузки в windows 8, параметры бытовых приборов, параметры автомобиля. Покупая какую-то вещь, мы внимательно изучаем ее основные характеристики. Так, приобретая компьютер, мы обращаем внимание на следующие его параметры: производительность, габариты, состав комплектующих, цену и др.. Исследование многих жизненных процессов осуществляется с помощью параметров. Например, состояние больного определяется с помощью параметров температуры, давления. Для оценки состояния спортсмена в качестве параметра используется частота сердечных сокращений. Положение движущегося тела в пространстве определяется параметром времени. В изолированном сосуде данного объема давление газа характеризуется параметром температуры.
Толковый словарь определяет параметр как величину, характеризующую какое-нибудь основное свойство машины, устройства, системы или явления, процесса. (Ожегов С.И. , Шведова Н.Ю. Толковый словарь русского языка. Москва. 1999). Рассмотрение параметров — это всегда выбор. Перед выбором мы стоим и в различных жизненных ситуациях.
Вспомним сказку. В чистом поле стоит столб, а на столбу написаны слова: «Кто поедет от столба сего прямо, тот будет голоден и холоден; кто поедет в правую сторону, тот будет здрав и жив, а конь его будет мертв; а кто поедет в левую сторону, тот сам будет убит, а конь его жив и здрав останется!» Иван-царевич прочел эту надпись и поехал в правую сторону, держа на уме: хоть конь его и убит будет, зато сам жив останется и со временем сможет достать себе другого коня. (“Иван-царевич и серый волк” Русская народная сказка).
Но это в сказке, а что же собой представляет параметр в математике? Какую роль он играет при решении уравнений? Какими методами решаются уравнения с параметрами?
Актуальность данной темы определяется необходимостью уметь решать такие уравнения с параметрами при сдачи Единого Государственного экзамена и на вступительных экзаменах в высшие учебные заведения.
Цель данной работы систематизировать уравнения, содержащие параметр, и составить алгоритм их решения с учетом свойств различных функций.
Для достижения поставленной цели необходимо решить следующие задачи:
1) дать определения понятиям «уравнение с параметрами»;
2) показать принцип решения данных уравнений на общих случаях;
3) показать решение уравнений с параметрами, связанных со свойствами линейной, квадратичной, рациональной и иррациональной функциями, используя различные методы.
4) составить алгоритм решения уравнений с параметрами, с учетом свойств различных функций.
Для выполнения поставленной цели были использованы следующие методы: использование литературы разного типа, работа в группах на уроках алгебры и факультативных занятиях по математике.
Объектом исследовательской работы было решение уравнений с параметрами, связанных со свойствами выше представленных функций.
Я выбрал эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Моя работа поможет понять другим ученикам как решаются уравнения с параметрами, применяя аналитический и графического методы, узнать о происхождении таких уравнений. В своей работе я ознакомился с теоретическими основами решения уравнений, содержащих параметр. Рассмотрел аналитический и графический способы решения основных видов уравнений, содержащих параметр.
В моей работе рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на ЕГЭ. В первой части изложен наиболее стандартный, аналитический способ решения уравнений, а во второй – графический.
Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях.
РАЗДЕЛ 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РЕШЕНИЯ УРАВНЕНИЙ, СОДЕРЖАЩИХ ПАРАМЕТР
Пусть дано равенство с переменными x, a :
Если ставится задача для каждого действительного значения а решить это уравнение относительно х , то уравнение называется уравнением с переменной х и параметром а .
Решить уравнение с параметром а – это значит для каждого значения а найти значения х , удовлетворяющие этому уравнению.
с неизвестными х, у, . z и с параметрами . При всякой допустимой системе значений параметров α 0 , β 0 , . γ 0 уравнение ( F ) обращается в уравнение
с неизвестными х, у. z, не содержащих параметров. Уравнение ( F 0 ) имеет некоторое вполне определенное множество (быть, может, пустое) решений.
Аналогично рассматриваются неравенства и системы, содержащие параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.
Определение. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения.
Понятие эквивалентности применительно к уравнениям, содержащие параметр, устанавливается следующим образом.
Определение. Два уравнения
с неизвестным х, у. z и с параметрами называются эквивалентными, если для обоих уравнений множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения эквивалентны.
Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.
Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.
Предположим, что каждое из неизвестных, содержащихся в уравнении
задано в виде некоторой функции от параметров:
Говорят, что система функций ( Х ), заданных совместно, удовлетворяет уравнению ( F ), если при подстановке этих функций вместо неизвестных х , у . z в уравнение ( F ) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:
При всякой допустимой системе численных значений параметров = α 0 , , . соответствующие значения функций ( Х ) образуют решение уравнения [ Горнштейн, П.И. Задачи с параметрами: учеб. пособие/ П.И. Горнштейн, В.Б. Полонский, М.С. Якир – Киев, 1992. ].
РАЗДЕЛ 2 ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ,
Основной принцип решения параметрических уравнений можно сформулировать так: необходимо разбить область изменения параметра на участки, такие, что при изменении параметра в каждом из них получающиеся уравнения можно решить одним и тем же методом. Отдельно для каждого участка находятся корни уравнения, выраженные через значения параметра, используемые для этого приемы в точности таковы, как и при решении уравнений с постоянными коэффициентами. Поскольку каждый из методов представляет собой последовательность определенных действий, которые могут выполняться по-разному в зависимости от значений параметра, то выбранные первоначально участки его изменения в процессе решения могут дробиться с тем, чтобы на каждом из них рассуждения проводились единообразно. Ответ задачи состоит из списка участков изменения параметра с указанием для каждого участка всех корней уравнения.
Для разбиения множества значений параметра на участки удобно воспользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра будем называть контрольными.
Основное, что нужно усвоить при решении таких уравнений. Параметр – это буква, которая «никому ничем не обязана» и может принимать любые допустимые значения. Поэтому с ней нужно необходимость осторожно, даже деликатно, помня, что это фиксированное, но неизвестным числом.
Видео:Математика это не ИсламСкачать
2.1. История возникновения уравнений с параметром
Задачи на уравнения с параметром встречались уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
В уравнении коэффициенты, кроме параметра a , могут быть и отрицательными.
В алгебраическом трактате Ал-Хорезми дается классификация линейных и квадратных уравнений с параметром а. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корням», т. е.
2) «Квадраты равны числу», т. е.
3) «Корни равны числу», т. е
4) «Квадраты и числа равны корням», т. е.
5) «Квадраты и корни равны числу», т. е.
6) «Корни и числа равны квадратам», т. е.
Формулы решения квадратных уравнений по Ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи.
Вывод формулы решения квадратного уравнения с параметром в общем виде имеется у Виета, однако Виета признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принял современный вид.
История возникновения графического метода далеко уходит в древние века. Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. При таком характере не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом. Но среди схоластов возникла школа, утверждавшая, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь)
Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им «линией интенсивностей» или «линией верхнего края» (график соответствующей функциональной зависимости). Оресм изучал даже «плоскостные» и «телесные» качества, т.е. функции, зависящие от двух или трех переменных.
Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.
Чтобы создать математический аппарат для изучения графиков функций, понадобилось понятие переменной величины. Это понятие было введено в науку французским философом и математиком Рене Декартом (1596-1650). Именно Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему.
Таким образом, графики функций за все время своего существования прошли через ряд фундаментальных преобразований, приведших их к тому виду, к которому мы привыкли. Каждый этап или ступень развития графиков функций — неотъемлемая часть истории современной алгебры и геометрии.
Графический способ определения числа корней уравнения в зависимости от входящего в него параметра является более удобным, чем аналитический.
Видео:Уравнение с параметром | Математика TutorOnlineСкачать
2.2. Теорема Виета
Теорема, выражающая связь между параметрами, коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если b + d , умноженное на α минус α 2 , равно bc , то α равно b и равно d ».
Чтобы понять Виета, следует вспомнить, что α, как и всякая гласная буква, означала у него неизвестное (наше х ), гласные же b, d – коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:
Если имеет место
Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виета установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.
Видео:Математика | Параметр. Система уравнений с параметромСкачать
2.3. Аналитический метод решения задач с параметрами.
2.3.1. Линейные уравнения с параметрами
Уравнение вида , где – некоторые постоянные, называется линейным уравнением.
Если , то линейное уравнение имеет единственный корень: .
Если , переписав исходное уравнение в виде , легко видеть, что любое х является решением линейного уравнения.
Если а, то линейное уравнение не имеет корней.
Класс линейных уравнений с параметром выделяется с помощью двух характеристик:
1. В уравнении переменная х находится в первой степени;
2. При помощи равносильных преобразований на области допустимых значений параметра уравнение приводится к стандартному виду
Основываясь на основные свойства линейной функции, можно составить алгоритм решения. В зависимости от вида уравнения некоторые пункты его могут быть опущены (Приложение 1).
Решить уравнение: , если а – параметр.
1. Область допустимых значений параметра – вся числовая прямая.
2. Приведем уравнение к виду .
3. Контрольными являются те значения параметра, при которых коэффициент при х обращается в нуль. Такими значениями будут.
4. Если , то уравнение примет вид . Это уравнение не имеет корней.
Если , то уравнение примет вид . Корнем этого уравнения является любое действительное число.
Ответ: если , то корней нет;
Решить уравнение: , если а – параметр.
1. Область допустимых значений параметра – вся числовая прямая.
2. Приведем уравнение к виду .
3. Контрольные значения параметра: .
4. Если , то уравнение примет вид . Это уравнение не имеет корней.
Если , то уравнение примет вид. Корнем этого уравнения является любое действительное число.
Ответ: если , то корней нет;
Область допустимых значений параметра – вся числовая прямая.
Приведем уравнение к виду
Контрольные значения параметра: .
если , то уравнение принимает вид , x
если , то уравнение имеет один корень
2.3.2. Квадратные уравнения, содержащие параметр
Класс уравнений второй степени с параметрами определяется с помощью двух характеристик:
1. Переменная х в уравнении находится в первой и второй степенях;
2. При помощи равносильных преобразований на области допустимых значений параметра уравнение приводится к стандартному виду
Контрольные значения параметра определяются дискриминантом D . На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из типов:
Если , то уравнение имеет два корня:
Если , то уравнение имеет один корень кратности два или два равных корня
Если , то уравнение не имеет действительных корней.
Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:
На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.
На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду .
Выделяют множество контрольных значений параметра, для которых .
Если уравнение имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно. Проводится классификация частных уравнений по первым трем типам.
На бесконечном множестве решений уравнения проводится решение уравнения , выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых и , соответствует третий тип не особых частных уравнений.
Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень .
Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.
Множеству значений параметра, для которых и , соответствует тип не особых частных уравнений, не имеющих решений, для значений параметра из множества, где и , частные уравнения имеют два различных действительных корня (см. [ Горнштейн, П.И. Задачи с параметрами: учеб. пособие/ П.И. Горнштейн, В.Б. Полонский, М.С. Якир – Киев, 1992. ],[5]).
Из этого следует алгоритм решения квадратных уравнений с параметрами. В зависимости от вида уравнения некоторые пункты его могут быть опущены (Приложение 2)
Область допустимых значений параметра – вся числовая прямая.
Контрольным значением параметра является .
при уравнение будет линейное
при уравнение будет квадратным
Если , то уравнение примет вид . Отсюда .
При уравнение является квадратным. Найдем дискриминант уравнения:
Контрольное значение параметра
Оценим знак дискриминанта
Если и действительных корней нет.
Область допустимых значений параметра – вся числовая прямая.
Контрольное значение параметра .
Если , то уравнение будет линейным и примет вид
Если , то уравнение будет квадратным с дискриминантом
🎥 Видео
Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)Скачать
8 класс, 39 урок, Задачи с параметрамиСкачать
11 класс, 34 урок, Задачи с параметрамиСкачать
✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать
Задача 17 ЕГЭ профильный. Параметры с нуляСкачать
Решаем квадратное уравнение с параметромСкачать
#11. Как решать системы уравнений с параметром графически?Скачать
Неравенства №15 за 2023, 2022 и 2021 года | ЕГЭ по математике | Аня МатеманяСкачать
9 класс. Алгебра. Уравнение с параметрами.Скачать
✓ Тригонометрический параметр | Резерв досрока ЕГЭ-2019. Задание 17. Математика | Борис ТрушинСкачать
Решить квадратное уравнение с параметром - bezbotvyСкачать
9 класс. Алгебра. Уравнения с параметромСкачать