История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Об алгебраическом уравнении 3-й степени и формулах его корней

С егодня редко можно встретить хорошего репетитора по математике, который бы знал еще и историю математики. Процентов 80 всех репетиторов, знакомя учеников с дискриминантами, векторами, производными, синусами, косинусами, графиками функции понятия не имеют о том, как, когда, кем и при каких обстоятельствах они впервые были введены и изучены. Исторические сведения о тех или иных математических открытиях и фактах помогут репетитору по математике лучше понимать свой предмет и придадут занятиям большую глубину, полноту и разнообразие.

О возникновении формул Кардано для решения кубического уравнения.

В Европе в XVI в. Было положено начало оригинального развития математики и перехода от старого к новому этапу ее жизни. Важнейшими математическими достижениями XVI в. были алгебраическое решение уравнений 3-й и 4-ой степени и создание алгебраической символики. Новый этап развития алгебры зародился в Италии. В начале XVI в. профессор математики Болонского университета Сципион дель-Ферро (1465—1526) впервые нашел алгебраическое решение уравнения третьей степени вида История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех,где p и q положительные числа.

Это решение профессор держал в строгом секрете, о нем узнали только два ученика ученого, в том числе некий Фиоре. Утаивание научных открытий в то время имело особое значение для жизни и карьеры их авторов. В Италии широко практиковались тогда математические поединки-диспуты: на многолюдных собраниях оба противника предлагали один другому задании для решения их на месте или в определенный срок. Побеждал тот, кто решал большое количество задач. Победитель награждался при этом не только славой и назначенным денежным призом, но и возможностью занять университетскую кафедру или другую должность. А человек, потерпевший на диспуте поражении , часто терял занимаемое им место.

В математических диспутах XVI в. Первое место занимала алгебра, названная «великим искусством», в отличие от арифметики, которую называли «малым искусством». Диспуты проходили в городе Болонья, который славился своим университетом. В этом высшем учебном заведении работали многие ученые с мировым именем, в том числе Лука Пачоли, Николай Коперник, а позже Галилео Галилей и др.

Для участников алгебраических диспутов было исключительно важно обладать неизвестной еще для других формулой решения того или иного типа уравнений, алгоритмом. Вот почему после внезапной смерти дель Ферро его ученик Фиоре, который сам не был глубоким математиком, решил воспользоваться сообщенным ему секретом и вызвать на публичный диспут одного из виднейших математиков того времени Николо Тарталья (ок. 1499—1557).

Настоящая фамилия ученого была не Тарталья, а Фонтана. В 1512году его родной город Брешия был оккупирован французскими войсками. В то время озверевшие солдаты беспощадно грабили и даже убивали мирных жителей. Маленький Николо тоже был тяжело ранен: у него был рассечен язык. Матери удалось спасти жизнь сына, но говорить свободно Николо уже никогда не мог, речь его была крайне невнятной. Он получил прозвище Тартатья (заика). Несмотря на тяжелые материальные условия, одаренный мальчик упорно овладевал математикой. Нередко, когда не было денег на покупку бумаги, он писал свои математические вычисления на заборах и камнях.

Ко времени вызова на поединок со стороны Фиоре (1535) Тарталья уже занимал кафедру математики в Вероне и славился как первоклассный ученый. Одной из самых актуальных и жгучих проблем того времени было алгебраическое решение «решение в радикалах» кубических уравнений, т.е. нахождение общей формулы, выражающей корни любого уравнения третьей степени в зависимости от коэффициентов при помощи конечного числа алгебраических операций — сложения, вычитания, умножения, деления, возведения в степень и извлечении корней. Такая формула была давно известна для уравнения второй степени, а поэтому было естественно ее искать и для третьей, тем более, что ученые мира до этого времени такой формулы найти не могли.

Получив вызов на диспут, Тарталья понял, что Фиоре обладает формулой для решения кубического уравнения и при подготовке к диспуту все свои внимание сосредоточил на на поисках своей формулы. Он работал днем и ночью над этой проблемой и его труды не пропали даром. Вот как позже он писал об этом: «Я приложил все свое рвение, усердие и математическое умение, чтобы найти этот алгоритм., и , благодаря благосклонной судьбе, мне удалось это сделать за 8 дней до срока».

Диспут состоялся 20 февраля 1535г. Тарталья в течение двух часов решил 30 задач (почти в 2 раза больше задач, чем на ЕГЭ по математике, и 2 раза быстрее), предложенных ему противникам. Фиоре, который не смог решить ни одной из 30 предложенных ему задач, выбранных Тартальей из различных областей математики, признал себя побежденным. После диспута Тарталья стал знаменитым во всей Италии, однако он продолжал держать в секрете найденную им формулу, та как намеревался опубликовать ее в своем труде по алгебре.

Другой видный итальянский ученый, Джероламо Кардано (1501—1576), который долго искал, но никак не мог найти алгоритма решения кубического уравнения, обратился в 1539г. К Тарталье с просьбой сообщить ему соответствующую формулу. После того, как Кардано дал «священную клятву» в том, что он никому не раскроет тайну, Таталья согласился открыть ему секрет. Однако в своем общении в стихах Тарталья сделал это лишь частично и сознательно замаскировал полное решение кубического уравнения.

Между тем, в 1542 году Кардано познакомился в Болонье с рукописями покойного профессора дель-Ферро и получил полную ясность в этом вопросе. В 1545 г. Кардано опубликовал свой знаменитый труд «О великом искусстве, ил об алгебраических вещах в одной книге» В нем он впервые опубликовал само решение уравнения История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырехи показал формулы корней. В современной записи они выглядят так:
История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

В книге Кардано содержится также алгебраическое решение уравнений четвертой степени — важнейшее открытие, сделанное одним из его учеников — Луиджи Феррари (1522—1565).

После выхода в свет книги Кардано последний был обвинен Тартальей в нарушении данного им обещания и клятвы. «У меня, — писал Тарталья, — вероломно похитили лучшее украшение моего труда по алгебре» Последовала и острая продолжительная полемика между обоими математиками и их сторонниками.
Таковы обстоятельства, при которых были открыты общие формулы для решения уравнений 3-й степени. Формулы поныне называются «формулами Кардано», несмотря на то, что следовало бы их называть, по крайней мере, так: «Формулы Ферро-Тарталья —Кардано».

Комментарий репетитора по математике: Формулы решения кубического уравнения позволяют найти его корни на множестве действительных чисел при условии, что История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех. Однако при отрицательном подкоренном выражении корни могут тоже существовать (например, при p= −2 и q=1 корень, очевидно, x=1), поэтому условие История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырехне является, как в случае с дискриминантом, критерием существование решений. Формулы приобретают безусловный и общий смысл только на множестве комплексных чисел. Некоторые математики и репетиторы по высшей математике, работающие с сильными учениками, считают формулы Кардано неким недоразумением или красивым обманом, однако сам факт их получения заслуживает как минимум внимания и восхищения.

Колпаков Александр Николаевич, репетитор по математике. Москва

Большое Вам спасибо, очень познавательный материал. А можно как-то подписаться на Ваши материалы по математике? Заранее спасибо!

Думаю создать к лету на сайте специальный раздел с рассылками публикуемых статей (по методике и математике). Скорее всего это будут подборки интересных задач с моими комментариями по их решению или использованию. В том числе будут справочные страницы. Начинающий репетитор по математике получит возможность использовать готовые методидические материалы, проверенные на учениках разного уровня и сортированные по темам. Если хотите – можете уже сейчас дать добро на занесение вашего e-mail адреса в этот список.

Видео:Теорема БезуСкачать

Теорема Безу

Формула Кардано: история и применение

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Изучая математику на профильном и углубленном уровне, выполняя олимпиадные задания, мы часто встречаем уравнения третьей и более высоких степеней. Кроме этого, многие практические задачи сводятся к решению различных видов уравнений.

Для решения некоторых видов уравнений имеются определенные способы, алгоритмы, например, линейных уравнений первой степени, квадратных и биквадратных уравнений. Правила решений алгебраических уравнений первой и второй степени были известны еще в античные времена. Для уравнений более высоких степеней были известны лишь некоторые приемы решения частных видов.

В школьном курсе математики, для решений целых уравнений третьей и более высоких степеней рассмотрены некоторые способы: разложение на множители с помощью теоремы Безу, выполнение алгебраических преобразований. И меня заинтересовало: существует ли формула для решения уравнений высоких степеней, как формула для решения квадратных уравнений. Пытались ли математики отыскать общую формулу для решения кубических уравнений, составить своего рода алгоритм порядка алгебраических действий с коэффициентами, чтобы получить корни? Получено ли выражение корней через коэффициенты уравнения?

Цель настоящей работы — изучить способы решения кубических уравнений, установить факт существования формулы для нахождения корней уравнения третьей степени, а также связи между корнями и коэффициентами в кубическом уравнении.

Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Скачать:

ВложениеРазмер
isslovatelskaya_rabota_formula_kardano_efremenko_n.doc536.5 КБ

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Предварительный просмотр:

Министерство образования республики Саха (Якутия)

МБУ «Усть-Янское районное управление образования»

МБОУ «Депутатская средняя общеобразовательная школа с углубленным изучением отдельных предметов»

Формула Кардано: история и применение

Выполнил: Ефременко Назар,

ученик 9 а класса

Руководитель: Биканова Ирина Васильевна

учитель высшей категории

п. Депутатский, 2015г

Изучая математику на профильном и углубленном уровне, выполняя олимпиадные задания, мы часто встречаем уравнения третьей и более высоких степеней. Кроме этого, многие практические задачи сводятся к решению различных видов уравнений.

Для решения некоторых видов уравнений имеются определенные способы, алгоритмы, например, линейных уравнений первой степени, квадратных и биквадратных уравнений. Правила решений алгебраических уравнений первой и второй степени были известны еще в античные времена. Для уравнений более высоких степеней были известны лишь некоторые приемы решения частных видов.

В школьном курсе математики, для решений целых уравнений третьей и более высоких степеней рассмотрены некоторые способы: разложение на множители с помощью теоремы Безу, выполнение алгебраических преобразований. И меня заинтересовало: существует ли формула для решения уравнений высоких степеней, как формула для решения квадратных уравнений. П ытались ли математики отыскать общую формулу для решения кубических уравнений, составить своего рода алгоритм порядка алгебраических действий с коэффициентами, чтобы получить корни? Получено ли выражение корней через коэффициенты уравнения?

Цель настоящей работы — изучить способы решения кубических уравнений, установить факт существования формулы для нахождения корней уравнения третьей степени, а также связи между корнями и коэффициентами в кубическом уравнении.

Для достижения цели я поставил следующие задачи:

  1. изучить историю науки решения кубических уравнений, труды ее создателей;
  2. провести хронологию исторических событий, связанных с открытием формулы Кардано;
  3. доказать практическим путем актуальность применения формулы решения уравнений третьей степени.

Моя работа состоит из IV частей: первая – введение – рассказывает о целях и задачах работы; во второй части рассматриваются теоретические и практические вопросы применения формулы Кардано; в третьей части я подвожу итоги своей работы.

2. История открытия формулы Кардано

Людские заблуждения. Полна

История гигантских лжеоткрытий.

Какая паутина соткана

Из представлений, этих тонких нитей.

О, сколько тут прогнозов и афер!

О, сколько тут напущено тумана!

Тут Саваоф и страшный Люцифер,

Златой Ваал и злой чубук шамана.

В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество овец в стаде, совокупность вещей, учитываемых при разделе имущества.

Анализ исторических документов подтверждает тот факт, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Но ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Только «Арифметика» греческого математика Диофанта Александрийского (III в.) содержит собрание задач на составление уравнений с систематическим изложением их решений. Труд багдадского ученого IX в. Мухаммеда Бен Мусы ал-Хорезми, получивший широкую известность, стал первым руководством по решению задач.

В поисках формулы решения кубических уравнений я познакомился с уникальными научными материалами, заставляющими посмотреть на историю науки и её создателей другими глазами, задуматься над нравственными аспектами их творчества. Жизнь некоторых знаменитых учёных прошлого иногда представляется как занимательный детектив. Таков рассказ о том, как два великих итальянских математика стали смертельными врагами.

12 февраля 1535 г. жители итальянского города Болоньи стали свидетелями необычайного зрелища. К зданию Болонского университета стекались многочисленные людские процессии. Профессора и студенты, скромные ученые-монахи и пышно одетые дворяне стремились поскорее занять лучшие места в аудитории — в университете должен был состояться математический турнир! В Италии того времени широко практиковались математические поединки, в ходе которых ученые состязались между собой в том, кто больше решит задач, предложенных соперником. Победитель получал не только заслуженную славу и денежный приз, но зачастую и возможность занять хорошо оплачиваемую должность. А человек, потерпевший поражение, нередко терял научную репутацию и занимаемое им место. В математических диспутах первой половины XVI века основное место занимала алгебра, недаром названная «великим искусством», в отличие от арифметики, которую считали «малым искусством». Для участников поединков было исключительно важно обладать какой-либо неизвестной для других формулой или новым алгоритмом. Одной из самых актуальных и жгучих проблем того времени было нахождение общей формулы, выражающей корни любого уравнения третьей степени. Такая формула была давно известна для уравнений второй степени, а поэтому было вполне естественно попытаться найти ее и для третьей. Жители Болоньи надеялись увидеть очередную победу своего земляка — Антонио Марио Фиоре. Сам Фиоре, правда, не слишком славился своими математическими открытиями. Но он был одним из любимых учеников известного алгебраиста Сципиона дель Ферро (1465 — 1526), который перед смертью открыл Фиоре великую тайну — правило решения кубического уравнения.

Даль Ферро подбирал многочисленные варианты по аналогии с формулой корней приведенного квадратного уравнения . Рассуждал он так: корень квадратного уравнения: — ± можно представить в виде х=t ± . Значит, корнем кубического уравнения тоже должна быть сумма или разность каких-то чисел, причем, среди них должны быть и корни третьей степени. Из многочисленных вариантов один оказался удачным: ответ он нашел в виде разности — Еще труднее было догадаться, что t и u надо подобрать

Подставив вместо х разность — , а вместо р произведение получили: ( — ) 3 +3 ( — )=q.

t — 3 +3 — u+3 — 3 =q.

После приведения подобных слагаемых получили t-u=q.

Получили систему уравнений:

tu=( ) 3 t-u=q. Решим ее. Возведем правую и левую части первого уравнения в квадрат, а второе уравнение умножим на 4, сложим первое и второе уравнения. 4t 2 +2tu+u 2 =q 2 +4( ) 3 ; (t+u) 2 =4( )+( ) 3 t+u=2 История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Из новой системы

t+u=2 ; t-u=q получаем t= + ; u= — . Подставив вместо х выражение — получили следующее равенство: История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

С тех пор Фиоре побеждал в диспутах очень легко — он давал противникам задачи, решение которых сводилось к кубическим уравнениям. Соперником Фиоре должен был стать Никколо Тарталья — главный консультант по математическим расчетам венецианского арсенала, занимавший кафедру математики в Вероне. Тарталья хорошо понимал, какой удар по его репутации нанесет поражение в турнире. Оставался единственный выход из этого отчаянного положения — самому найти формулу для решения кубического уравнения. После длительных размышлений, мучительных неудачных попыток и бессонных ночей он получил желанную формулу для решения кубических уравнений вида x 3 +ax=b, где a и b — положительные числа. «Я применил все свое рвение, прилежание и искусство, чтобы найти правило этих уравнений, и это удалось, благодаря счастливой судьбе», — вспоминал позже Тарталья. Поэтому 12 февраля стало черным днем болонской математики — Тарталья одержал безоговорочную победу. Он решил все задачи, предложенные ему соперником, а Фиоре не сумел справиться ни с одной из придуманных Тартальей задач.

Точная дата рождения Никколо Тартальи неизвестна, впрочем, как и его настоящая фамилия. Считается, что он родился около 1500 года в семье бедного конного почтальона Микелетто Фонтана. После смерти отца семья Никколо впала в полную нищету. В школе мальчик проучился всего-то две недели, поскольку на дальнейшее образование не было денег. «С тех пор я учился сам, и у меня не было другого наставника, кроме спутника бедности — предприимчивости», — писал позднее Тарталья в одной из своих книг. Никколо жил во времена, так называемых, Итальянских войн, которые вели между собой Франция и Испания за право владеть Италией. Когда мальчику было около двенадцати лет, Брешия, родной город Николо, был захвачен французскими войсками. Население укрылось в церкви, но стены храма не спасли жителей от бесчинств иностранных солдат. Пострадал и Никколо, получивший удар по голове, в результате чего у мальчика был рассечен язык. Это увечье сделало его речь крайне невнятной. Отсюда и пошло прозвище Тарталья, означающее по-итальянски «заика», ставшее впоследствии фамилией.

Обладая большой настойчивостью и терпением, Никколо научился читать сам. Пристрастившись к математике, он достиг того, что успешно сдал экзамены на звание «магистра абака» (что-то вроде учителя арифметики) и начал работать в частном коммерческом лицее. Затем Тарталья преподавал математику и механику в университетах Брешии, Вероны и Венеции. В своих сочинениях Тарталья рассматривал не только проблемы арифметики, алгебры и геометрии, но и некоторые вопросы практической механики, баллистики, фортификации и геодезии. В частности, он впервые исследовал вопрос о траектории выпущенного снаряда и показал, что наибольшая дальность полета соответствует углу в 45°. Это открытие могло иметь практическое применение при ожидавшемся нападении турецкого флота на Венецию.

После диспута Тарталья стал знаменитым во всей Италии, однако продолжал держать в секрете найденную им формулу, так как намеревался опубликовать ее в своем труде по алгебре. Тарталья, по его словам, самостоятельно открыл правило дель Ферро для уравнения x 3 +ax=b, а через несколько дней после турнира нашел способ решения и уравнения вида x 3 =ax+b. (В то время признавались только положительные числа, и поэтому эти два вида уравнений рассматривались как разные). Но в некоторых случаях даже Тарталья оказывался бессилен: он знал значения всех трех корней кубического уравнения, но ни одного из них не мог вычислить по своей формуле! Тарталья долго пытался разобраться в возникших трудностях и отложил из-за этого издание книги о своих открытиях. Такую книгу в 1545 году издал другой итальянский ученый — Джироламо Кардано, а знаменитая формула вошла в историю не как формула дель Ферро или Тартальи, а как формула Кардано.

Кардано Джироламо (24.9.1501-21.9.1576) — итальянский математик, механик и врач. Родился в Павии, учился в университетах Павии и Падуи, в молодости занимался медициной. В 1534г. стал профессором математики в Милане и Болонье. В математике с именем Кардано обычно связывают формулу для решения кубического уравнения, которую он позаимствовал у Н. Тартальи. Эта формула была опубликована в книге Кардано «Великое искусство, или О правилах алгебры» (1545г.).

В предисловии к книге Кардано пишет: «. в наше время Сципион дель Ферро открыл формулу, согласно которой куб неизвестного плюс неизвестное равен числу. Это была очень красивая и замечательная работа. Соревнуясь с ним, Никколо Тарталья из Брешии, наш друг, будучи вызван на состязание с учеником дель Ферро по имени Антонио Марио Фиоре, решил, дабы не быть побежденным, ту же самую проблему и после долгих просьб передал ее мне…». И хотя Кардано честно написал о том, от кого он узнал секрет решения уравнений третьей степени, Тарталья обиделся, посчитал себя обкраденным и написал своему «другу» гневное письмо. «У меня вероломно похитили лучшее украшение моего труда по алгебре», — писал Тарталья.

С того времени Тарталья и Кардано стали смертельными врагами.

В книге Кардано систематически изложены современные ему методы решения уравнений, главным образом кубических. Кардано выполнил линейное преобразование, позволяющее привести кубическое уравнение к виду, свободному от члена 2-ой степени и указал на зависимость между корнями и коэффициентами уравнения, на делимость многочлена на разность x –a, если a-его корень. Кардано одним из первых в Европе допускал существование отрицательных корней уравнений. В его работе впервые появляются мнимые величины.

Кардано не ответил на письмо Тартальи. За честь учителя вступился Л. Феррари и в свою очередь написал Никколо резкое письмо. В заключение он вызвал Тарталью на публичный диспут по «геометрии, арифметике или связанным с ними дисциплинам, таким как астрология, музыка, космография, перспектива, архитектура и др.». Поединок состоялся 10 августа 1548 года в Милане. Косноязычному Тарталье было трудно противостоять молодому блестящему Феррари, и он потерпел поражение. Бесславное для Тартальи завершение диспута уронило его научный авторитет и сильно повредило дальнейшей карьере. Никколо стали меньше приглашать для чтения лекций, и он занимал себя тем, что переводил на итальянский язык труды Архимеда и Евклида. Умер Тарталья в 1557 году. А Джероламо Кардано покончил жизнь самоубийством в 1576 году. В конце жизненного пути он написал автобиографическую книгу «О моей жизни», в которой есть такие строчки: «Сознаюсь, что в математике кое-что, но на самом деле лишь ничтожное количество, я заимствовал у брата Никколо». Возможно, его все-таки мучила совесть…

Так кто же все-таки первым открыл формулу? Большинство ученых сходятся на том, что первым решение кубического уравнения нашел все-таки дель Ферро; Фиоре узнал его от своего учителя; Тарталья переоткрыл формулу дель Ферро; Кардано же дал полную и исчерпывающую теорию решения любого уравнения третьей степени.

Так С.Г. Бернатосян в аналитической книге «Воровство и обман в науке» так характеризует математика Кардано: «… “великий” изобретатель, итальянец Джероламо Кардано, который, будучи не меньшим аферистом по духу, чем Клавдий Птолемей, только и делал, что пользовался жатвой с чужого поля. Причём в отличие от Птолемея не брезговал обкрадывать не только мёртвых, но и живых. Страсть этого человека к увековечиванию своего имени была ещё более болезненной, и, доведись ему оказаться на месте Герострата, он так же бы легко пошёл на поджог редчайшего по красоте храма . Но если Герострата цивилизованный мир по сию пору поминает с неприязнью, то к Кардано он относится с глубоким уважением и даже подобострастием. Мало того, что его многочисленные достижения заполонили практически все справочники и энциклопедии, так его имя ещё и не сходит с уст автолюбителей, озабоченных состоянием своих карданных шарниров и валов, медиков, использующих “карданный метод” лечения астмы, учащихся колледжей, вызубривающих на уроках формулу Кардано, и даже астрономов, поскольку один из кратеров на видимой стороне Луны тоже назван в его честь».

Считается, что своё время Кардано нашел способы избавлять людей от слепоты, глухоты, немоты, эпилепсии, выработал общий подход к лечению разных типов лихорадок, болезней суставов, камней в почках. Он первым распознал заболевание тифом, создал учение о локализации функций в мозгу, указал на благотворное влияние переливания крови при истощениях и первым обнаружил зависимость между целебными свойствами лекарств и их дозировкой, разработав метод «превращения дурных лекарств в полезные и внушающих отвращение в легко воспринимаемые».

Автор книги считает, что Кардано, «досконально проштудировав все медицинское наследие прошлого, сочинил рассчитанную на средневекового обывателя книгу, где собрал “в кучу” все самые полезные советы и рецепты, позабыв указать их истинных авторов. А безответственные историки, не разобравшись в существе вопроса, с лёгкостью включили в перечень заслуг Кардано достижения этих медиков, тем самым неоправданно выпятив его одиозную фигуру среди блестящих врачевателей Средневековья».

Всеобщее восхищение вызвала «повозка императора» (прообраз современного автомобиля) — одно из самых оригинальных изобретений века, получившая подробное описание в трактате «О тонких материях»: при передвижении по самым тяжёлым дорогам с очень крутыми подъёмами и ухабами, она сохраняла устойчивость и вполне годилась для прогулок самых важных и неприкосновенных особ. Её удобный и простой по конструкции механизм получил широкое распространение в современном машиностроении под общим названием «кардан» (карданный вал с карданным шарнирным сочленением).

Двойственную характеристику Кардано дал немецкий историк математики Мориц Б. Кантор: «Гений, но не характер». Французский философ Шарль Луи Монтескьё, напротив, не признавал в нем гения и брался «найти у Кардано мысли каких угодно авторов». Английский физик и врач Уильям Гильберт придерживался точки зрения, что тот «в своих столь объёмистых томах не передал потомству. ничего такого, что было бы достойно философа, а лишь некоторые сведения, взятые или описанные у других авторов, или неудачно придуманные». Гильберт вообще начисто отвергал любые заслуги Кардано перед наукой.

Чем же порождалась разноголосица мнений? Наверное, противоречивой и следовательно трудно доступной пониманию натурой этого человека, в котором сочетались самые разные наклонности, а цепкий ум уживался с редкой безнравственностью. Верхом такой безнравственности было, например, жестокое противостояние Кардано Николаю Копернику, который осмелился опровергнуть учение почитаемого итальянцем Птолемея, взаимоотношения Кардано с Николло Тартальей и другими математиками, чьи достижения он хитростью присвоил себе и опубликовал под своим именем.

Кардано во многом шёл по стопам своего кумира Птолемея, тут и там доказывая, что гений и злодейство всё-таки совместимы. Эти учёные, принадлежащие к далеко отстоящим друг от друга пластам истории, продемонстрировали миру поразительную общность не только в мировоззрении, но и в деяниях. Будучи людьми широчайшей энциклопедической осведомлённости, они сумели извлечь из наработанного другими ценнейший научный материал. Тщательно переработанный, проанализированный и отшлифованный, он лёг в основу множества дошедших до нас трудов и трактатов. Нельзя не быть благодарными за эти знания, но нельзя и не понимать, что «украсть у кого-то мысли бывает часто преступнее, чем украсть у кого-то деньги».

Проанализировав исторический материал, я пришел к мнению, что все-таки первым решение кубического уравнения нашел дель Ферро; Фиоре узнал его от своего учителя; Тарталья переоткрыл формулу дель Ферро; Кардано же дал полную и исчерпывающую теорию решения любого уравнения третьей степени. Но в тоже самое время можно признать, что точка в данном споре пока еще не поставлена. Возможно, исторические архивы таят в себе еще много неожиданного.

Прикладное значение формул Кардано было не слишком велико. Однако открытие нового теоретического метода, неизвестного ни грекам, ни арабам, воодушевило математиков средневековой Европы. Это открытие стало основой для введения одного из важнейших математических объектов — комплексных чисел. В настоящее время математики разработали приближенные методы для вычисления корней уравнений произвольной степени с любой точностью. Кубические же уравнения сегодня чаще всего решают по формулам Виета-Кардано, которые подходят для любых уравнений такого типа. Многие современные математики считают формулы Кардано неким недоразумением или красивым обманом, однако сам факт их получения заслуживает, как минимум, внимания и восхищения.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Научно-исследовательская работа по теме: « Уравнения высших степеней»

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Практика олимпиад, выпускных и вступительных экзаменов по математике показывает, что довольно часто приходится сталкиваться с уравнениями высших степеней. Решение таких уравнений зачастую вызывает большие трудности. Не все уравнения удается решить. В школьных учебниках уравнение высшей степени – редкость. В данной работе представлены методы решения указанных уравнений.

Цели работы: Узнать какие методы решения высших степеней существуют; Научиться решать уравнения высших степеней различными способами.

Задачи:

1.Подобрать необходимую литературу

2.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

3.Проанализировать и систематизировать полученную информацию

4.Найти различные методы и приёмы решения уравнений высших степеней

5.Классифицировать исследуемые уравнения

6.Оформить работу в виде буклета

7.Создать электронную презентацию работы для представления собранного материала

Объект исследования: уравнения высших степеней

Просмотр содержимого документа
«Научно-исследовательская работа по теме: « Уравнения высших степеней»»

Муниципальное казенное общеобразовательное учреждение

«Богучарская средняя общеобразовательная школа № 1»

по теме: « Уравнения высших степеней»

Автор: Жуковская Татьяна Владимировна , 9 «Б» класс

Руководитель: Алабина Галина Юрьевна

Великие учёные, изучавшие уравнения высших степеней….……. 6

Виды уравнений высших степеней………………………………………. ….9

Методы решения высших степеней……………….………………..…………9

Решение уравнений разными способами..………………….……………. 10

Решение уравнений высших степеней – история полная драматизма, разочарования и радости открытия. В течение почти 700 лет математики разных стран пытались найти приёмы решения уравнений третьей, четвёртой и более высоких степеней.

Только в 11 веке таджикский поэт и ученый Омар Хаям впервые решил уравнение III степени. Установить, существует ли формула для нахождения корней любого уравнения, пытались многие. В конце 18 века французский ученый Луи Лагранж пытался доказать невозможность алгоритма общих уравнений, а вначале 19 века француз Галуа развил идею Лагранжа.

С тех пор математика пошла другим путем. Ученые стали искать другие методы решения уравнений высших степеней.

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Практика олимпиад, выпускных и вступительных экзаменов по математике показывает, что довольно часто приходится сталкиваться с уравнениями высших степеней. Решение таких уравнений зачастую вызывает большие трудности. Не все уравнения удается решить. В школьных учебниках уравнение высшей степени – редкость. Поэтому я выбрала эту тему для своей исследовательской работы.

Цели работы: Узнать какие методы решения высших степеней существуют; Научиться решать уравнения высших степеней различными способами.

1.Подобрать необходимую литературу

2.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

3.Проанализировать и систематизировать полученную информацию

4.Найти различные методы и приёмы решения уравнений высших степеней

5.Классифицировать исследуемые уравнения

6.Оформить работу в виде буклета

7.Создать электронную презентацию работы для представления собранного материала

Объект исследования: уравнения высших степеней

Методы исследования: изучение и анализ литературы, сравнение, обобщение, практический метод

Результат исследования: Я научилась решать возвратные и однородные уравнения,а также изучила теорему Безу и схему Горнера.

Гипотеза:Существует много различных видов и методов решения уравнений высших степеней, о которых не рассказывается в школьной программе 9 класса.

Великие учёные, изучавшие уравнения высших степеней

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Омар Хайям (ок. 1048- ок. 1123)

Описал всевозможные виды уравнений третьей степени и рассмотрел сложные и красивые способы геометрических построений для отыскания их решения.

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Никколо Тарталья (1499-1557)

Он вывел формулы для решения уравнений 3-ей степени, но своё открытие держал в тайне.

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Обращался к Тарталье с просьбой сообщить ему формулу для решения кубических уравнений и обещал хранить её в секрете. Он не сдержал слово и опубликовал формулу, указав, что Тарталье принадлежит честь открытия «такого прекрасного и удивительного, превосходящего все таланты человеческого духа».

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Нильс Хенрик Абель (1802-1829)

В 1826 году доказал, что нельзя вывести формулы для решения уравнений пятой степени и выше.

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Этьен Безу (1730-1783)

Французский математик, член Парижской академии наук. Преподавал математику в Училище гардемаринов в 1763 и Королевском артиллерийском корпусе в 1768. Основные его работы относятся к алгебре (исследование систем алгебраических уравнений высших степеней, исключение неизвестных в таких системах и др.) Является автором шеститомного «Курса математики» (1764-1769).

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех

Уильям Джордж Горнер (1786 – 1837)

Английский математик. Основные труды по теории алгебраических уравнений. С его именем связана (1819) схема Горнера деления многочлена на двучлен .

Виды уравнений высших степеней

Уравнения третьей степени

Уравнения четвёртой степени

Уравнения пятой степени

Способы решения уравнений высших степеней

Разложение многочлена на множители:

По формулам сокращенного умножения

По теореме Безу

Метод введения новой переменной

Данный способ применяют к многочленам, которые не имеют общего множителя для всех членов многочлена. Чтобы разложить многочлен на множители способом группировки, нужно: Объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена. Вынести этот общий множитель за скобки.

Примеры решения уравнений способом группировки:

x-5=0 или x-4=0 или x+4=0

x-2=0 или x+2=0 или x-3=0

По формулам сокращенного умножения

1. Квадрат суммы: (a + b) 2 = a 2 + 2ab + b 2

2. Квадрат разности: (a — b) 2 = a 2 — 2ab + b 2

3. Разность квадратов: а 2 — b 2 = (a — b) (a + b)

4. Куб суммы: (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

5. Куб разности: (a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3

6. Сумма кубов: a 3 + b 3 = (a + b) (a 2 — ab + b 2 )

7. Разность кубов: a 3 — b 3 = (a — b) (a 2 + ab + b 2 )

Примеры решения уравнений с помощью формул сокращённого умножения:

x=1 D=16-64=-48-корней нет

История вопроса о нахождении формул корней алгебраических уравнений степеней больших четырех+18a⁴+108a²+216=0

💡 Видео

11 класс, 3 урок, Уравнения высших степенейСкачать

11 класс, 3 урок, Уравнения высших степеней

Математика это не ИсламСкачать

Математика это не Ислам

Уравнение четвертой степениСкачать

Уравнение четвертой степени

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Земля, огонь и кровь: краткая история алгебраических уравненийСкачать

Земля, огонь и кровь: краткая история алгебраических уравнений

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Формула Кардано. Решение уравнений третьей степени.Скачать

Формула Кардано. Решение уравнений третьей степени.

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Математика| Разложение квадратного трехчлена на множители.Скачать

Математика| Разложение квадратного трехчлена на множители.

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Схема Горнера. 10 класс.Скачать

Схема Горнера. 10 класс.

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика
Поделиться или сохранить к себе: