Уравнение называется квадратным, если имеет вид (ax^2+bx+c=0,) где (a,b,c) — любые числа ((a≠0)). При этом надо быть внимательным, если (a=0), то уравнение будет линейным, а не квадратным. Поэтому, первым делом при решении квадратного уравнения с параметром, рекомендую смотреть на коэффициент при (x^2) и рассматривать 2 случая: (a=0) (линейное уравнение); (a≠0) (квадратное уравнение). Квадратное уравнение часто решается при помощи дискриминанта или теоремы Виета.
Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Исследование квадратного многочлена
Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:
- Найдите такие значения параметра, чтобы оба корня были меньше некоторого числа (γ): (x_1≤x_2 0)); ветки параболы направлены вниз ((a 0). Значит, между корнями функция принимает отрицательные значения, а вне этого отрезка – положительные. Так как наше число (γ) должно по условию лежать вне отрезка ((x_1,x_2)), то (f(γ)>0).
- (a 0). Этим условием мы накладываем ограничение, что наши корни должны лежать слева или справа от числа (γ).
В итоге получаем:
если (a*f(γ) 0), то (γ∉(x_1,x_2)).
Нам осталось наложить условие, чтобы наши корни были слева от числа (γ). Здесь нужно просто сравнить положение вершины нашей параболы (x_0) относительно (γ). Заметим, что вершина лежит между точками (x_1) и (x_2). Если (x_0 0, \x_0
При каких значениях параметра a уравнение $$a(a+3) x^2+(2a+6)x-3a-9=0$$ имеет более одного корня?
1 случай: Если (a(a+3)=0), то уравнение будет линейным. При (a=0) исходное уравнение превращается в (6x-9=0), корень которого (x=1,5). Таким образом, при (a=0) уравнение имеет один корень.
При (a=-3) получаем (0*x^2+0*x-0=0), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.
2 случай: Если (a≠0; a≠-3), то получим квадратное уравнение. При положительном дискриминанте уравнение будет иметь более одного корня: $$D>0$$ $$D/4=(a+3)^2+3a(a+3)^2>0$$ $$(a+3)^2 (3a+1)>0$$ $$a>-frac.$$ С учетом (a≠0;) (a≠-3), получим, что уравнение имеет два корня при (a∈(-frac;0)∪(0;+∞)). Объединив оба случая получим (внимательно прочитайте, что от нас требуется):
Найти все значения параметра a, при которых корни уравнения $$(a+1) x^2-(a^2+2a)x-a-1=0$$ принадлежат отрезку ([-2;2]).
1 случай: Если (a=-1), то (0*x^2-x+1-1=0) отсюда (x=0). Это решение принадлежит ([-2;2]).
2 случай: При (a≠-1), получаем квадратное уравнение, с условием, что все корни принадлежат ([-2;2]). Для решения введем функцию (f(x)=(a+1) x^2-(a^2+2a)x-a-1) и запишем систему, которая задает требуемые условия:
Подставляем полученные выражения в систему:
Видео:Решаем квадратное уравнение с параметромСкачать
Квадратные уравнения с параметрами
Ханты-Мансийский автономный округ — Югра
Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №4»
Индекс 628681 Российская Федерация, Тюменская область, Ханты-Мансийский автономный округ – Югра, г. Мегион, /1
Cайт: http//www. megionschool4.ru
Департамент финансов администрации города Мегиона
( МБОУ «Средняя общеобразовательная школа №4»
р/с в РКЦ г. Нижневартовска,
Квадратные уравнения с параметрами
(Методическая разработка для учащихся 9-11 классов)
учитель математики высшей квалификационной категории,
заместитель директора по УВР
1.Теоремы о расположении корней квадратного трехчлена
§2.Применение теоремы Виета
3.Примеры решения задач для подготовки к ГИА и ЕГЭ по математике
Список рекомендованной литературы
В методической разработке систематизированы теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек); особое внимание уделено использованию свойств квадратичной функции; приведено применение теоремы Виета к решению квадратных уравнений с параметрами; все идеи проиллюстрированы примерами, рассмотрены основные методы решения квадратных уравнений с параметрами, подробные методические указания по решению квадратных уравнений с параметрами.
Методическая разработка предназначена для учащихся 9-11 классов, студентов педагогических вузов, а также для учителей. Пособие поможет в подготовке к вступительному экзамену в вуз, сдаче ЕГЭ по математике и к ГИА в новой форме.
Разработка посвящена одному из наиболее трудных разделов элементарной математики: задачам с параметрами. В последние годы в тестах ЕГЭ и ГИА по математике, и на вступительных экзаменах в высшие учебные заведения широкое распространение получили задачи, содержащие параметры. Решение задач с параметрами носит учебно-исследовательский характер, они играют важную роль в формировании логического мышления, развитии творческих способностей учащихся, в формировании научно-исследовательских умений. Задачи с параметрами представляют собой как бы небольшую модель будущей научной работы учащегося. В задачах с параметрами содержится множество приёмов, необходимых не только для математического развития личности, но и и в любом другом научном исследовании. Поэтому решение задач с параметрами и в частности решение квадратных уравнений с параметрами является пропедевтикой научно-исследовательской работы учащихся. На ЕГЭ по математике (часто задания С5), ГИА (задания части 2) и на вступительных экзаменах встречаются, в основном, два типа задач с параметрами. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.
Как известно, решению задач с параметрами в школе уделяется очень мало внимания. Поэтому решение задач с параметрами всегда вызывает большие трудности у учащихся; трудно рассчитывать на то, что учащиеся, подготовка которых не содержала «параметрическую терапию», смогут в жесткой атмосфере конкурсного экзамена успешно справиться с подобными задачами, следовательно, учащиеся должны специально готовиться к «встрече с параметрами». Многие учащиеся воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать постоянной величиной, но это постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.
Задачи с параметрами обладают диагностической и прогностической ценностью – с помощью задач с параметрами можно проверить знание основных разделов школьной математики, уровень математического и логического мышления, первоначальные навыки научно-исследовательской деятельности, а главное, перспективные возможности успешного овладения курсом математики данного вуза.
Анализ вариантов ЕГЭ по математике и вступительных экзаменов в различные вузы показывает, что большинство предлагаемых задач с параметрами связано с расположением корней квадратного трехчлена. Будучи основной в школьном курсе математики, квадратичная функция формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей – в основе их решения лежат свойства квадратичной функции. При решении таких задач рекомендуется работать с тремя типами моделей:
1. вербальная модель – словесное описание задачи;
2. геометрическая модель – эскиз графика квадратичной функции;
3. аналитическая модель – система неравенств, при помощи которой описывается геометрическая модель.
Методическое пособие содержит теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек), применение теоремы Виета к решению квадратных уравнений с параметрами. Приведены подробные решения 15 задач с методическими рекомендациями. Назначение данного пособия – помочь выпускнику и учителю математики в подготовке к сдаче ЕГЭ и ГИА по математике, и вступительного экзамена в вуз в виде теста или в традиционной форме.
1. Теоремы о расположении корней квадратного трехчлена
Теоремы о расположении корней квадратного трехчлена не входят непосредственно ни в школьную программу по математике, ни в программу для поступающих в вузы, поэтому выпускник или абитуриент, пользуясь ими, вообще говоря, должен уметь их доказывать. В то же время, обоснование теорем о расположении корней квадратного трехчлена строится на элементарных фактах школьной математики. В данном пособии приведены доказательства нескольких теорем.
Введем следующие обозначения: х1, х2 – корни квадратного трехчлена f(x), х1 ≤ х2, D – дискриминант f(x), xb – абсцисса вершины параболы, являющейся графиком f(x). Решение большинства задач с параметром, в которых необходимо провести исследование квадратного трехчлена, сводится к определению необходимых и достаточных условий реализации одного или нескольких из следующих случаев:
Теорема 1.Для того чтобы оба корня квадратного трехчлена f(x) = ax2 + bx + c (a ≠ 0) были больше некоторого числа n,необходимо и достаточно выполнение следующих условий:
Геометрическая интерпретация. Для того чтобы парабола (см. рис. 1, 2) – график функции f(x) = ax2 + bx + c – пересекала ось ОХ в точках (х1; 0) и (х2; 0), лежащих правее точки (n; 0), необходимо и достаточно выполнения трех условий:
1. вершина параболы – либо лежит в нижней полуплоскости, либо в верхней полуплоскости, либо на оси ОХ ( условие D≥0);
2. ось симметрии параболы – прямая хb = — — лежит правее прямой х = n ( условие xb>n );
3. парабола пересекается с прямой х = n в точке, лежащей в верхней полуплоскости при a>0 и в точке, лежащей в нижней полуплоскости при а 0).
Рис. 1
Доказательство теоремы 1.
Достаточность. Так как D ≥ 0,то по теореме о дискриминанте, получим, что квадратный трехчлен имеет два корня х1 и х2; пусть х1≤х2. Так как вершина параболы расположена между корнями трехчлена, т. е.х1≤хв≤х2, и, по условию, n 0 и уже доказанное неравенство х2 > n:
f(n) = a∙(n – x1)∙(n – x2).
Сравнение знаков левой и правой частей этого неравенства приводит нас к выводу, что выполнено неравенство n – х1 n.
Необходимость. Так как трехчлен имеет два корня, то по теореме о дискриминанте, D≥0. Так как х1> n и х2> n, то х1+х2 > 2n, поэтому
хв = > = n.
По теореме о разложении на линейные множители, с учетом известных по условию знаков, получим запись f(n) = a∙(n – x1)∙(n – x2), из которой следует, что f(n) > 0. Тем самым теорема доказана полностью.
Теорема 2. Для того чтобы оба корня квадратного трехчлена f(х) были меньше некоторого числа m, необходимо и достаточно выполнение следующих условий:
Рис. 3
Рис. 4
Теорема 3.Для того чтобы оба корня квадратного трехчлена f(x) принадлежали заданному промежутку (n; m), необходимо и достаточно выполнение следующих условий:
Рис. 5
Рис. 6
Теорема 4. Только меньший корень квадратного трехчлена f(x) принадлежит заданному промежутку (n; m) тогда и только тогда, когда одновременно выполняются условия:
Рис. 7
Теорема 5. Только больший корень квадратного трехчлена f(x) принадлежит заданному промежутку (n; m) тогда и только тогда, когда одновременно выполняются условия:
Рис. 8
Теорема 6. Для того чтобы оба корня квадратного трехчлена f(x) лежат вне заданного промежутка (n; m), необходимо и достаточно выполнение следующих условий:
Рис. 9
Теорема 7.Для того чтобы один из корней квадратного трехчлена f(x) был больше заданного числа n, а другой меньше, необходимо и достаточно выполнение условия (или для того чтобы некоторое число n лежало между корнями квадратного трехчлена, необходимо и достаточно выполнение условия):
Рис. 10
Теорема 8. Квадратный трехчлен f(x) имеет один корень внутри интервала (n;m), а другой расположен вне этого интервала тогда и только тогда, когда выполняется условие f(n)∙f(m) 6 дискриминант оказывается отрицательным, следовательно, квадратное уравнение не имеет корней.
Ответ: при уравнение не имеет корней; при а = 1 уравнение имеет один корень х = -1; при уравнение имеет два корня ; при а = 2 уравнение имеет единственный корень ; при а = 6 уравнение имеет единственный корень .
Пример 2.При каком значении параметра а уравнение (а — 2)х2 + (4 – 2а)х + 3 = 0 имеет единственный корень?
Решение. Если а = 2, то уравнение превращается в линейное∙х + 3 = 0; которое не имеет корней.
Если а ≠ 2, то уравнение – квадратное и имеет единственный корень при нулевом дискриминанте D.
.
D = 0 при а1 = 2 и a2 = 5. Значение а = 2 исключается, так как противоречит условию, что исходное уравнение – квадратное.
4.При каких значениях параметра а квадратное уравнение
(а — 1)х2 + (2а + 3)х + а + 2 = 0 имеет корни одного знака?
Решение. Так как по условию задачи рассмотренное уравнение – квадратное, значит, а ≠ 1. очевидно, условие задачи предполагает также существование корней квадратного уравнения, что означает неотрицателность дискриминанта
Так как по условию корни должны быть одинаковых знаков, то х1∙х2 > 0, т. е. .Решением последнего неравенства является .С учетом условий D ≥ 0 и а ≠ 1 получим .
Ответ: .
Пример 3.Найти все значения а, для которых уравнение х2 – 2(а – 1)х + (2а + 1) = 0 имеет два положительных корня.
Решение. Из теоремы Виета для того чтобы оба корня х1 и х2 данного уравнения были положительными, необходимо и достаточно, чтобы дискриминант квадратного трехчлена х2 – 2(а – 1)х + (2а + 1) был неотрицательным, а произведение х1∙х2 и сумма х1 + х2 были положительными. Получаем, что все а, удовлетворяющие системе
И только они, являются решениями поставленной задачи. Э та система равносильна системе
Решением которой, а следовательно, и самой задачи являются все числа из промежутка [4; + ∞).
Пример 4.При каких значениях параметра а уравнение (а — 2)х2 — 2(а + 3)х + 4а = 0
имеет два корня, один из которых меньше 2, а другой больше 3?
Решение. По теореме 6, для того чтобы оба корня данного квадратного трехчлена лежали вне заданного промежутка, необходимо и достаточно выполнение условий Получим систему неравенств:
Ответ: .
Пример 5.При каких значениях а уравнение (а — 1)∙х2 = (а + 1)∙х – а имеет единственное решение, удовлетворяющее условию 0 х1. Искомые значения параметра а удобнее найти, решив систему неравенств:
у
Рис.18 0 х1 2 3 х2 5 х
Ответ: (1;3)
Пример 8.При каких значениях параметра а один корень уравнения ах4 – (а — 3)х2 + 3а = 0 меньше –2, три остальных больше –1?
Решение. Пусть х2 = t. Исходя из требований, предъявляемых к корням исходного уравнения, достаточно решить следующую задачу: при каких значениях а один корень уравнения at2 – (a — 3)t + 3a = 0 больше 4, другой меньше 1, но не меньше 0? Очевидно а ¹ 0, D > 0. Представим уравнение в виде:
.
Его корни будут удовлетворять указанным выше условиям, если f(1) 0. Поскольку f(0) = 3, то достаточно решить систему
Решением уравнения является . Ответ: .
Пример 9.Найдите все значения параметра а, при которых все корни уравнения
(2 — а)х2 – 3ах + 2а = 0 больше .
Решение. Введем обозначения f(x) = (2 — a)x2 – 3ax + 2a, ;
Если а = 2, то . для случая а ≠ 2, чтобы сформулировать нужные условия, представим себе график трехчлена f(x), оба корня которого больше .
(к рис.19) (к рис.20)
(к рис.21) (к рис.22)
Объединяя эти условия, получим систему:
Ответ: .
Пример 10. Найти все значения а, при которых уравнение cos8x + sin8x = a имеет корни, и решить это уравнение.
Решение. Используя равенства cos8x + sin8x = (cos4x – sin4x)2 + 2cos4x×sin4x = cos22x + и полагая cos 4x = t, преобразуем исходное уравнение к виду t2 + 14t + 17 – 32a = 0. Задача сводится к нахождению тех значений а при которых последнее уравнение имеет действительные корни такие, что хотя один из них удовлетворяет условию . Имеем дискриминант уравнения:
и неравенство D1 ³ 0 выполняется при а ³ -1. находим корни t1 и t2 уравнения :
; .
Заметим, что t1 1.
Первый случай реализуется неравенством D = -4a + 5
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Методика обучения решению квадратных уравнений с параметром
Разделы: Математика
Решение задач с параметром вызывает затруднения у учащихся, так как практических заданий по данной теме в школьных учебниках недостаточно.
Цели разработки темы
- формирование устойчивого интереса к познавательному процессу при изучении математики и оценка возможности овладения предметом с точки зрения дальнейшей перспективы;
- обеспечение прочного и сознательного усвоения учащимися системой математических знаний, умений и навыков;
- формирование качества мышления, характерного для математической деятельности и необходимые человеку для жизни в современном обществе;
- выявление и развитие математических способностей учащихся.
- Задачи разработки темы:
- показать универсальные алгоритмы для решения квадратных уравнений с параметром;
- научить приемам решения различного класса задач с параметром, способствовать овладению технических и интеллектуальных математических умений на уровне свободного их использования;
- использование новых современных педагогических технологий обучения.
В математике параметр – это постоянная величина, выраженная буквой, сохраняющая свое постоянное значение лишь в условиях данной задачи (“параметр” с греческого “parametron” – отмеривающий)..
Если ставится задача для каждого значения параметра а из некоторого числового множества А решить уравнение F(х;а)= 0 относительно х, то это уравнение называют уравнением с переменной х и параметром а, а множество А – областью изменения параметра. Под областью определения уравнения F(х;а)=0 с параметром а понимаются такие системы значений х и а, при которых F(х;а) имеет смысл. Все значения параметра а, при которых F(х;а) не имеет смысла, включать в число значений параметра, при которых уравнение не имеет решений. Под областью изменения параметра (если не сделано специальных оговорок) берется множество всех действительных чисел, а задачу решения уравнения с параметром формулировать следующим образом: решить уравнение F(х;а)=0 (с переменной х и параметром а) – это значит на множестве действительных чисел решить семейство уравнений, получающихся из данного уравнения при всех действительных значениях параметра или установить, что решений нет.
В связи с тем, что выписать каждое уравнение из бесконечного семейства уравнений невозможно, но каждое уравнение семейства должно быть решено, следовательно, необходимо по некоторому целесообразному признаку разбить множество всех значений параметра на подмножества и решить затем заданное уравнение на каждом из этих подмножеств. Для разбиения множества значений параметра на подмножества, удобно пользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра называются контрольными.
1. КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ
Задачи с параметрами можно разделить на два больших класса:
- задачи, в которых необходимо при всех значениях параметра из некоторого множества решить уравнение;
- задачи, в которых требуется найти все значения параметра, при каждом из которых решение уравнения удовлетворяют некоторым условиям.
В зависимости от типа задачи изменяется и вид ответа. В первом случае в решении и ответе должны быть рассмотрены все возможные значения параметров. Если хотя бы одно значение какого-либо параметра не исследовано, решение задачи не может быть признано полным.
Во втором случае в ответе перечисляются только те значения параметра, при которых выполнены условия задачи, а при решении подобных задач обычно решать заданное уравнение нет необходимости.
Уравнение вида Ах 2 + Вх + С= 0 , где А, В, С — выражения, зависимые от параметра, х – переменная — называется квадратным уравнением с параметром.
Уравнение вида ах 2 +вх+с=0, где , а, в, с – действительные числа, называют квадратным уравнением. D=в 2 -4ас называется дискриминантом квадратного уравнения (“дискриминант” по – латыни “различитель”).
В зависимости от значения дискриминанта возможны три случая:
D > 0. Данное квадратное уравнение имеет два действительных корня
D=0. Данное уравнение имеет корень двойной кратности
D 2 +2кх+с=0 со вторым коэффициентом (в=2к) четным, для нахождения корней удобно пользоваться формулами: , где D1= =к 2 -ас.
№ 1.1. Определите все значения параметра а при которых уравнение ах 2 +2(а+1)х+а+3=0 имеет два неравных корня.
Если а=0, то имеем 0·х 2 +2(0+1)х+0+3=0, 2х+3=0 — данное уравнение является линейным, х=-1,5 – единственный корень. Итак, а=0 не удовлетворяет условию задачи.
Если а?0, то уравнение имеет два различных корня, когда дискриминант >0.
Найдем=(а+1) 2 -а(а+3)=-а+1,-а+1>0, а 2 -4(а+1)х+4а+1=0 имеет один корень.
Если а=0, то имеем 2·0·х 2 -4(0+1)х+4·0+1=0, -4х+1=0 — данное уравнение является линейным, х=0,25 – единственный корень. Итак, а=0 удовлетворяет условию задачи.
Если а 0, то исходное уравнение является квадратным и имеет единственный корень при =0. Найдем =(2(a+1)) 2 -2a(4а+1) = -4a 2 +6a+4,4a 2 +6a+4=0, а1=2, а2=-0,5.
С учетом а=0, запишем ответ: а=-0,5, а=0, а=2.
№ 1.3. При каких значениях параметра а квадратное уравнение (5а-1)х 2 -(5а+2)х+3а-2=0 не имеет корней?
Если 5а-1=0,а=0,2, то имеем (5*0,2-1)х 2 -(5*0,2+2)х+3*0,2-2=0,
-3х-1,4=0 — данное уравнение является линейным, х = — единственный корень.
Итак, а=0,2 не удовлетворяет условию задачи.
Если а 0,2, то квадратное уравнение не имеет корней, если дискриминант квадратного уравнения D 2 -4(5a-1)(3а-2)=-35a 2 +72a-4,-35a 2 +72a-4 2 -72a+4>0, а1=2, а2=, (а-2)(а-)>0. С учетом а 0,2 ответ:
№ 1.4. Определите все значения параметра а при которых уравнение (2а-1)х 2 +ах+2а-3=0 имеет не более одного решения.
Если 2а-1=0,а=0,5, то имеем (2·0,5-1)х 2 +0,5·х+2·0,5-3=0, 0,5х-2=0 — данное уравнение является линейным, х=4 — единственный корень.
Итак, а=0,5 удовлетворяет условию задачи.
Если а 0,5, то квадратное уравнение имеет не более одного решения, если дискриминант квадратного уравнения D0.
Найдем D=а 2 -4(2a-1)(2а-3)=-15a 2 +32a-12, -15a 2 +32a-120,
15a 2 -32a+12?0, а1=, а2=, (а-)(а-) 0.
С учетом а 0,5, имеем .
С учетом а=0,5, запишем ответ: .
2. НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ.
Квадратное уравнение ах 2 +вх+с=0, где а 0 называется неполным, если хотя бы один из коэффициентов в или с равен 0.
Общая схема решения неполных квадратных уравнений с параметрами.
ах 2 =0, где а 0, в=0, с=0. Если а 0 ,то уравнение примет вид: х 2 =0, х=0.
Следовательно, уравнение имеет два совпадающих корня, равных нулю.
Если а=0, то х — любое действительное число.
ах 2 +с=0, где а0, в=0, с0. Если а0,то уравнение примет вид: следовательно, уравнение имеет корни, то они равны по абсолютной величине, но противоположны по знаку; 2 +вх=0, где а0, в0, с=0. Если а0,то уравнение примет вид: х(а+в)=0,или Если а=0, то вх=0, х=0.
№ 2.1. При каких значениях параметра а оба корня уравнения 2х 2 +(3а 2 -|а|)х-а 2 -3а=0 равны нулю?
Оба корня квадратного уравнения равны нулю, когда
№ 2.2. При каких значениях параметра а, корни уравнения 2 х 2 -(5а-3)х+1=0 равны по модулю, но противоположны по знаку?
Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда 5а-3=0,а=0,6, но с учетом того, что имеем уравнение 2х 2 +1=0, х 2 =-0,5, которое корней не имеет. Ответ: .
№ 2.3. При каких значениях параметра а один из двух различных корней уравнения 3х 2 +х+2а-3=0 равен нулю?
Параметр должен удовлетворять условию: 2а-3=0, а=1,5. Ответ: а=1,5.
№ 2.4. При каких значениях параметра а корни уравнения 3х 2 +(а 2 -4а)х+а-1=0 равны по модулю, но противоположны по знаку?
Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда:
Ответ: а=0.
№ 2.5. Решить относительно х неполное квадратное уравнение х 2 -2а+1=а.
х 2 =а+2а-1; х 2 =3а-1.
Если 3а-1=0, а= ,то уравнение имеет два совпадающих корня, равных нулю.
Если 3а-1 0. а>, то уравнение имеет два корня .
Ответ: при арешений нет; при а= х=0; при
3. ИССЛЕДОВАНИЕ И РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПАРАМЕТРОМ.
№ 3.1. Исследовать и решить уравнение с параметром х 2 –2(а-1)х+2а+1=0.
Найдем дискриминант: D=(а — 1) 2 -2а – 1= а 2 -2а+1-2а-1= а 2 — 4а.
D > 0, а 2 — 4а > 0, а (а -4) > 0, а 4, то уравнение имеет два действительных корня ;
D =0, а (а-4)=0, а=0, то х=а-1, х=0-1, х=-1, а=4,то х=а-1, х=4-1, х=3;
D 2 +2(а+1)х+а–2= 0.
1) При а-1=0, а=1 имеем линейное уравнение 4х-1=0, х=– единственное решение.
2) При а 1 уравнение является квадратным, найдем дискриминант:
D1 = (а+1) 2 -(а–1)(2а-2)=а 2 +2а+1-а 2 +2а+а-2=5а-1.
D1>0. 5а-1>0, а>, а 1, то уравнение имеет два корня .
D1=0. 5а-1=0, а=, то уравнение имеет два равных корня .
х 2 +2х-8–ах+4а=0; х 2 +(2-а)х+4а-8=0. Уравнение является квадратным.
Найдем дискриминант: D=(2-а) 2 -4(4а-8)=4-4а+а 2 -16а+32= а 2 -20а+36.
D>0. а 2 20а+36>0, (а-18)(а -2)>0, а 18, то уравнение имеет два действительных корня .
D=0. (а-18)(а-2)=0, а=2, то ; а=18, то ;
D 2 равен 1, то уравнение принимает вид х 2 +px+q, где p и q — некоторые числа называется приведенным квадратным уравнением.
Теорема Виета: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
ах 2 +вх+с=0, где х1 и х2 – корни квадратного уравнения, то
Справедливо утверждение, обратное теореме Виета.
Теорема: Если числа p и q таковы, что их сумма равна -p, а произведение равно q. то эти числа являются корнями уравнения х 2 +px+q=0.
№ 4.1. При каком значении параметра а сумма обратных величин действительных корней уравнения 2х 2 -2ах+а 2 -2=0 равна ?
Пусть х1 и х2 – корни квадратного уравнения, по условию .
По теореме Виета: Используя соотношения между корнями и условие задачи, имеем:
Найдем дискриминант квадратного уравнения:
Имеем: Ответ: при
№ 4.2. В уравнении (а 2 -5а+3)х 2 +(3а-1)х+2=0 определите а так, чтобы один из корней был вдвое больше другого.
Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =2 х2. Заметим, что кратное сравнение выполняется только для положительных чисел.
По теореме Виета и условию задачи имеем систему:
Составим и решим уравнение:
Можно вычислить дискриминант данного уравнения, а затем проверить, удовлетворяет ли данное значение параметра а условию, что дискриминант неотрицателен, а так же, что корни положительны. Однако в данной задаче значительно проще сделать проверку, подставив это значение а в исходное уравнение.
При Корни отрицательны и кратно не сравниваются, поэтому задача решений не имеет. Ответ: решений нет.
№ 4.3. Найти все значения параметра а, при которых квадратное уравнение (а+2)х 2 –ах-а=0 имеет два корня, расположенных на числовой прямой симметрично относительно точки х=1.
При а+2=0, а=-2, то 2х+2=0, х=-1 – единственное решение, следовательно данное значение а не удовлетворяет условию задачи.
При а-2. Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =1-у, х2.=1+у, где у – некоторое действительное число.
По теореме Виета имеем:
Решим первое уравнение системы: 2(а+2)=а, а=-4.
Найдем дискриминант данного квадратного уравнения:
Данное значение а=-4 удовлетворяет полученным значениям. Ответ: а=-4.
Ответ: при а = — 4.
- ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.
- Азаров А.И., Барвенов С.А., Федосенко В.С. Методы решения задач с параметрами. Минск; “Аверсэв”. 2005.
- Амелькин В. В., Рабцевич В. Л. Задачи с параметрами. Минск; “Асар”. 1996.
- Данкова И. Н., Бондаренко Т. Е., Емелина Л. Л., Плетнева О. К.Предпрофильная подготовка учащихся 9 классов по математике. Москва; “5 за знания”.2006.
- Литвиненко В. Н., Мордкович А. Г.. Практикум по элементарной математике. Москва; “Просвещение”.1991.
- Родионов Е. М. Решение задач с параметрами. Москва; “Русь – 90”. 1995.
- Студенецкая В. Н., Сагателова Л. С. Математика 8 – 9классы: сборник элективных курсов. Волгоград; “Учитель”. 2006.
- Шарыгин И. Ф. Решение задач. Москва; “Просвещение”. 1994.
- Шахмейстер А. Х. Уравнения и неравенства с параметрами. Санкт-Петербург; “Петроглиф”. 2006.
🎬 Видео
(3) Параметр в ЕГЭ. Исследование квадратных уравнений. Расположение корнейСкачать
Исследование квадратных уравнений с параметром. Задание №17 в ЕГЭ по математикеСкачать
Параметры 3. Расположение корней квадратного уравнения. ЕГЭ №18Скачать
Уравнения с параметром. Алгебра, 8 классСкачать
Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать
9 класс, 7 урок, Задачи с параметрамиСкачать
11 класс, 34 урок, Задачи с параметрамиСкачать
8 класс, 39 урок, Задачи с параметрамиСкачать
Математика это не ИсламСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать
Квадратное уравнение с параметром. Исследование корней квадратного уравнения. Алгебра 8 классСкачать
✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать
Простая система квадратных уравнений | Параметр 108 | mathus.ru #егэ2024Скачать
Решить квадратное уравнение с параметром - bezbotvyСкачать
Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
Квадратные уравнения с параметрами Урок 2Скачать