Используя рисунок решите систему уравнений

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Используя рисунок решите систему уравнений

Вопрос по алгебре:

Используя рисунок решите систему уравнений <3y=x <xy=3

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Используя рисунок решите систему уравненийОткрываем новые знания

Решите графическим методом систему уравнений:

Используя рисунок решите систему уравнений

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Используя рисунок решите систему уравнений

Построим графики уравнений Используя рисунок решите систему уравнений

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Используя рисунок решите систему уравненийПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Используя рисунок решите систему уравнений

Построим графики уравнений Используя рисунок решите систему уравнений

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Используя рисунок решите систему уравненийОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Используя рисунок решите систему уравнений

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Используя рисунок решите систему уравнений

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Используя рисунок решите систему уравнений

Пусть (х; у) — решение системы.

Выразим х из уравнения Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Подставим найденное выражение в первое уравнение:

Используя рисунок решите систему уравнений

Решим полученное уравнение:

Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Используя рисунок решите систему уравнений

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Используя рисунок решите систему уравнений

Подставим найденное выражение в первое уравнение системы:

Используя рисунок решите систему уравнений

После преобразований получим:

Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Используя рисунок решите систему уравнений

Подставим во второе уравнение Используя рисунок решите систему уравненийтогда его можно переписать в виде:

Используя рисунок решите систему уравнений

Теперь выразим х через у из первого уравнения системы:

Используя рисунок решите систему уравнений

Подставим в полученное ранее уравнение ху = 2:

Используя рисунок решите систему уравнений

Корни этого уравнения: Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Используя рисунок решите систему уравнений

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

Используя рисунок решите систему уравнений.

Корни этого уравнения: Используя рисунок решите систему уравнений

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1) Используя рисунок решите систему уравнений

2) Используя рисунок решите систему уравнений, получим уравнение Используя рисунок решите систему уравненийкорней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Используя рисунок решите систему уравнений

Обозначим Используя рисунок решите систему уравнений

Второе уравнение системы примет вид:

Используя рисунок решите систему уравнений

Решим полученное уравнение. Получим, умножая обе части на 2а:

Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Осталось решить методом подстановки линейные системы:

Используя рисунок решите систему уравнений

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Используя рисунок решите систему уравненийсм.

Воспользуемся теоремой Пифагора: Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Решим систему. Выразим из первого уравнения у:

Используя рисунок решите систему уравнений

Подставим во второе уравнение:

Используя рисунок решите систему уравнений

Корни уравнения: Используя рисунок решите систему уравнений

Найдём Используя рисунок решите систему уравнений

С учётом условия Используя рисунок решите систему уравненийполучим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: Используя рисунок решите систему уравнений— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Используя рисунок решите систему уравнений

Вычтем из второго уравнения первое. Получим:

Используя рисунок решите систему уравнений

Дальше будем решать методом подстановки:

Используя рисунок решите систему уравнений

Подставим в первое уравнение выражение для у:

Используя рисунок решите систему уравнений

Корни уравнения: Используя рисунок решите систему уравнений(не подходит по смыслу задачи).

Найдём у из уравнения:

Используя рисунок решите систему уравнений

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Используя рисунок решите систему уравненийсимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Используя рисунок решите систему уравнений, то есть не меняется. А вот уравнение Используя рисунок решите систему уравненийне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Используя рисунок решите систему уравнений, то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

Используя рисунок решите систему уравнений

переставить местами неизвестные х и у, то получим систему:

Используя рисунок решите систему уравнений

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Используя рисунок решите систему уравнений

Сначала научитесь выражать через неизвестные Используя рисунок решите систему уравненийвыражения:

Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Используя рисунок решите систему уравнений

Присылайте задания в любое время дня и ночи в ➔ Используя рисунок решите систему уравненийИспользуя рисунок решите систему уравнений

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Немного теории.

Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать

7 класс, 39 урок, Метод алгебраического сложения

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Алгебра 9 класс. Решение систем уравнений через подстановку.Скачать

Алгебра 9 класс. Решение систем уравнений через подстановку.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

🎥 Видео

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Симметричные системы #1Скачать

Симметричные системы #1

430 Алгебра 9 класс. Решите систему уравнений используя способ подстановкиСкачать

430 Алгебра 9 класс. Решите систему уравнений используя способ подстановки

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.
Поделиться или сохранить к себе: