Интегрирование системы дифференциальных уравнений методом эйлера

Интегрирование системы дифференциальных уравнений методом эйлера

Системой дифференциальных уравнений называется система вида

Интегрирование системы дифференциальных уравнений методом эйлера

где x — независимый аргумент,

yi — зависимая функция, Интегрирование системы дифференциальных уравнений методом эйлера,

Функции yi(x), при подстановке которой система уравнений обращается в тождество, называется решением системой дифференциальных уравнений.

Численные методы решения систем дифференциальных уравнений.

Интегрирование системы дифференциальных уравнений методом эйлера

Модифицированный метод Эйлера.

Метод Рунге-Кутта четвертого порядка.

Дифференциальным уравнением второго порядка называется уравнение вида

F(x,y,у’,y»)=0(1)
y»=f(x,y,y’).(2)

Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения.

Численно ищется частное решение уравнения (2), которое удовлетворяет заданным начальным условиям, то есть решается задача Коши.

Для численного решения дифференциальное уравнение второго порядка преобразуется в систему двух дифференциальных уравнений первого порядка и приводится к машинному виду (3). Для этого вводится новая неизвестная функция Интегрирование системы дифференциальных уравнений методом эйлера, слева в каждом уравнении системы оставляют только первые производные неизвестных функций, а в правых частях производных быть не должно

Интегрирование системы дифференциальных уравнений методом эйлера.(3)

Функция f2(x, y1, y) в систему (3) введена формально для того, чтобы методы, которые будут показаны ниже, могли быть использованы для решения произвольной системы дифференциальных уравнений первого порядка. Рассмотрим несколько численных методов решения системы (3). Расчетные зависимости для i+1 шага интегрирования имеют следующий вид. Для решения системы из n уравнений расчетные формулы приведены выше. Для решения системы из двух уравнений расчетные формулы удобно записать без двойных индексов в следующем виде:

Метод Рунге-Кутта четвертого порядка.

где h — шаг интегрирования. Начальные условия при численном интегрировании учитываются на нулевом шаге: i=0, x=x0, y1=y10, y=y0.

Контрольное задание по зачетной работе.

Колебания с одной степенью свободы

Цель. Изучение численных методов решения дифференциальных уравнений второго порядка и систем дифференциальных уравнений первого порядка.

Задание. Численно и аналитически найти:

  1. закон движения материальной точки на пружинке х(t),
  2. закон изменения силы тока I(t) в колебательном контуре (RLC — цепи) для заданных в табл.1,2 режимов. Построить графики искомых функций.

Свободные незатухающие колебания

Затухающее колебательное движение

Предельное апериодическое движение

Вынужденное колебание без сопротивления

Вынужденное колебание без сопротивления, явление резонанса

Вынужденное колебание с линейным сопротивлением

Вынужденное колебание с линейным сопротивлением, явление резонанса

Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Интегрирование системы дифференциальных уравнений методом эйлера

последовательностью точек x0,x1. в соответствующие моменты времени t0,t1. Значения точек должны удоволетворять приближенному равенству

Интегрирование системы дифференциальных уравнений методом эйлера

Если специально не оговорено иное, то предполагается, что моменты времени выбираются через равные интервалы с величиной шага h>0, то есть

Интегрирование системы дифференциальных уравнений методом эйлера

Аппроксимируем производную в момент времени tk соотношением

Интегрирование системы дифференциальных уравнений методом эйлера

При такой аппроксимации уравнение (1) примет вид:

Формула (2) известна как прямой метод Эйлера.

На рис.1(a) показана графическая интерпретация прямого метода Эйлера. На (k+1)-ом шаге векторное поле предполагается (локально) постоянным со значением f(xk,tk).

Интегрирование системы дифференциальных уравнений методом эйлера

Рис.1 Иллюстрация алгоритмов (а) прямого метода Эйлера, (b) обратного метода Эйлера

Меньшее значение величины шага h в итоге дает точки аппроксимации чаще и, как демонстрирует рис.2, приводит к большей точности интегрирования, что приобретает математический смысл, поскольку (2) стремится к (1) при h->0.
Интегрирование системы дифференциальных уравнений методом эйлера

Рис.2 Влияние величины шага. Уравнение dx/dt=-6x+5t -t интегрируется от x=1 прямым методом Эйлера при h=0.3 (а) и при h=0.1 (b). Точное решение показано штриховой линией.

Обратный метод Эйлера подобен прямому, но есть одно отличие в аппроксимации для производной

Такая аппроксимация дает формулу обратного метода Эйлера:

Интегрирование системы дифференциальных уравнений методом эйлера

На рис.1(b) показана геометрическая интерпретация обратного метода Эйлера. На (k+1)-ом шаге векторное поле предполагается (локально) постоянным со значением f(xk+1,tk+1).

Обратный метод Эйлера — это пример неявного алгоритма интегрирования , где xk+1 является функцией от самой себя. И напротив, прямой метод Эйлера представляет собой явный алгоритм. В неявных алгоритмах для определения xk+1 требуются дополнительные вычисления, но они по сравнению с аналогичными прямыми алгоритмами более устойчивы и дают более высокую точность вычислений (см. рис.3). Возможно это обусловлено наличием члена xk+1 в правой части формулы, что может рассматриваться как вид обратной связи.

Интегрирование системы дифференциальных уравнений методом эйлера

Рис.3 Та же система, что и на рис.2 проинтегрирована от x0=1.0 с h=0.3 (a) прямым методом Эйлера, (b) обратным методом Эйлера. Точное решение показано штриховой линией.

Трапецеидальный алгоритм имеет вид:

Интегрирование системы дифференциальных уравнений методом эйлера

Имеется целое семейство уравнений Рунге-Кутта второго порядка. Мы рассмотрим модифицированный алгоритм Эйлера-Коши, заданный соотношением:

Интегрирование системы дифференциальных уравнений методом эйлера

Из этой формулы следует, что модифицированный алгоритм Эйлера-Коши включает два этапа. На первом этапе с помощью прямого метода Эйлера происходит перемещение на пол шага вперед к моменту времени (tk+h/2):

Интегрирование системы дифференциальных уравнений методом эйлера

На втором этапе это промежуточное значение используется для аппроксимации векторного поля с помощью итераций Эйлера прямого типа:

Интегрирование системы дифференциальных уравнений методом эйлера

Как и в случае алгоритма второго порядка метод Рунге-Кутта четвертого порядка относится к явным алгоритмам. Он использует промежуточные моменты времени для для вычисления состояния в момент времени tk+1. Следующие формулы определяют алгоритм Рунге-Кутта четвертого порядка:

Интегрирование системы дифференциальных уравнений методом эйлера

Для определенных выше алгоритмов на каждом шаге требуется только одна начальная точка xk. Такие алгоритмы называются одношаговыми. Одношаговые алгоритмы высокого порядка имеют высокую точность, но они не эффективны, если велики затраты на вычисление f. Например, алгоритм Рунге-Кутта четвертого порядка требует на шаге четыре значения f. Кроме того, на текущем шаге не выполняются оценки функций с целью их использования на последующих шагах.
В отличие от одношаговых алгоритмов, многошаговые алгоритмы повторно используют предыдущую информацию о траектории. В m-шаговом алгоритме для определения xk+1 используют m предыдущих точек xk, xk-1. xk-m+1 и значения f в этих точках. Общая формула m-шагового алгоритма имеет вид

Интегрирование системы дифференциальных уравнений методом эйлера

Локальная ошибка определяется как ошибка на шаге алгоритма:

Интегрирование системы дифференциальных уравнений методом эйлера

Для m-шаговых алгоритмов предполагается, что предыдущие m точек xk-i при i=0. m-1 являются точно заданными, т.е.

Интегрирование системы дифференциальных уравнений методом эйлера

Ошибка усечения — это локальная ошибка, которая получилась бы в результате выполнения алгоритма на компьютере с бесконечной точностью.
Другими словами, подразумевается, что эта локальная ошибка возникает помимо ошибки округления. Также важно помнить, что для m-шаговых алгоритмов предыдущие m точек xk. xk-m+1 предполагаются точно заданными.
Ошибка усечения берет свое название от алгоритмов, основанных на рядах Тейлора (например, Рунге-Кутта). Эти алгоритмы были бы точными, если бы использовались полные (бесконечные) ряды. Ошибка возникает при усечении ряда до конечного числа членов.
Ошибка усечения зависит только от алгоритма. Она не зависит от используемого компьютера и, следовательно, может быть проанализирована. Для алгоритмов Рунге-Кутта K-го порядка, при подходящих условиях, локальная ошибка усечения представляет собой

Интегрирование системы дифференциальных уравнений методом эйлера

где «альфа» зависит от K, f и xk, но не зависит от h. Для многошагового алгоритма K-го порядка локальная ошибка усечения имеет вид

Интегрирование системы дифференциальных уравнений методом эйлера

Глобальнае ошибка округления — это простое накопление локальных ошибок округления. Если локальная ошибка составляет «эпсилон», то ошибка округления на единичном интервале будет

Интегрирование системы дифференциальных уравнений методом эйлера

Подобно ошибке округления, локальная ошибка усечения также накапливается с каждым шагом. Для одношаговых алгоритмов K-го порядка локальная ошибка усечения составляет

Интегрирование системы дифференциальных уравнений методом эйлера

Если пренебречь зависимостью ak от xk, то на единичном интервале времени ошибка усечения будет:

Видео:Метод ЭйлераСкачать

Метод Эйлера

Моделирование динамических систем: численные методы решения ОДУ

Очень кратко рассмотрев основы механики в предыдущей статье, перейдем к практике, ибо даже той краткой теории что была рассмотрена хватит с головой.

Интегрирование системы дифференциальных уравнений методом эйлера

Камень бросают вертикально, без начальной скорости с высоты h = 100 м. Пренебрегая сопротивлением воздуха, определить закон движения камня, как функцию высоты камня над поверхностью Земли от времени. Ускорение свободного падения принять равным 10 м/с 2

Видео:Линейное дифференциальное уравнение Коши-ЭйлераСкачать

Линейное дифференциальное уравнение Коши-Эйлера

1. Формализация задачи

То, с чего начинается любое моделирование. Под формализацией понимают получение математических выражений, описывающих происходящий процесс. При этом формулируются допущения: перечень упрощений модели за счет факторов, влиянием которых можно пренебречь.

Для этой задачи применимо допущение, согласно которому камень можно считать материальной точкой. К этой точке приложена одна единственная сила — сила тяжести, так мы используем допущение об отсутствии сопротивления воздуха.

Следующим допущением будет полагать что Земля плоская, так как высота, с которой мы бросаем камень пренебрежимо мала в сравнении с размерами планеты, а значит кривизной её поверхности можно пренебречь. Тогда сила тяжести может считаться постоянной, направленной перпендикулярно поверхности Земли и равной по модулю

Интегрирование системы дифференциальных уравнений методом эйлера

где g — ускорение свободного падения у поверхности Земли. Теперь пришло время составить уравнения движения камня. Помните эти уравнения

Интегрирование системы дифференциальных уравнений методом эйлера

Левая их часть нас пока не интересует, а вот в правой стоят суммы проекций сил, приложенных к точке на оси координат. Пусть оси x и y располагаются на поверхности, а ось z направлена вверх перпендикулярно ей. Сила одна единственная, её проекции на оси x и y равны нулю, а на ось z проекция отрицательна, так как сила направлена против направления оси, то есть

Интегрирование системы дифференциальных уравнений методом эйлера

Масса камня, очевидно не равна нулю, значит можно спокойно поделить обе части получившихся уравнений на неё

Интегрирование системы дифференциальных уравнений методом эйлера

Не буду занудствовать, доказывая что движение камня будет происходить строго вертикально, хотя это нужно сделать с формальной точки зрения. Ноль в правой части первых двух уравнений совершенно не означает невозможность движения вдоль этих осей — вспоминаем первый закон Ньютона. На этом я остановлюсь в следующей статье более подробно, а пока справедливо положим одномерность движения, выписав окончательное дифференциальное уравнение

Интегрирование системы дифференциальных уравнений методом эйлера

То что у нас получилось не много не мало — математическая модель процесса происходящего в задаче. Пафосно, да?

Нет. Анализируя это уравнение мы делаем вывод, например, что масса камня не оказывает влияния на закон его движения, ведь массы в этом уравнении нет. Видите, даже не решив уравнения, мы уже формально доказали справедливость опыта с пером и кусочком свинца в вакууме, который любят показывать в школе (а некоторые повторили его на Луне).

Аналитическое решение получить просто, даже не буду заморачиваться, оно такое

Интегрирование системы дифференциальных уравнений методом эйлера

А вот как решить это численно? И что это вообще такое — «численно»?

Видео:Видеоурок "Системы диф. уравнений. Метод Эйлера"Скачать

Видеоурок "Системы диф. уравнений. Метод Эйлера"

2. Численное интегрирование дифференциального уравнения первого порядка

Какой такой первый порядок? Я же говорил в прошлый раз, что уравнения движения имеют второй порядок. Всё правильно, но большинство методов решения диффур на компьютере умеют решать только уравнения первого порядка. Есть методы прямого интегрирования уравнений второго порядка (например метод Верле), но о них не сейчас.

Во-первых, это уравнение относится к такому типу, что допускает понижение порядка. Правая часть не зависит от неизвестной функции (там нет z), поэтому вспоминаем, что

Интегрирование системы дифференциальных уравнений методом эйлера

проекция ускорения на ось z равна первой производной проекции скорости на ту же оcь z. Ну классно, тогда

Интегрирование системы дифференциальных уравнений методом эйлера

вот вам и уравнение первого порядка. Не всегда этот номер проходит (не буду я сейчас про форму Коши!), но в данном случае всё в порядке. Будем искать не координату а скорость точки. Что дальше-то? А дальше

Интегрирование системы дифференциальных уравнений методом эйлера

ведь производная, мы же знаем, это отношение бесконечно малого приращения функции (скорости) в к вызвавшему его бесконечно малому приращению аргумента (время). Возьмем очень маленький промежуток времени Интегрирование системы дифференциальных уравнений методом эйлера, настолько небольшой что можно считать

Интегрирование системы дифференциальных уравнений методом эйлера

Что получается? А вот что

Интегрирование системы дифференциальных уравнений методом эйлера

Мы получили приращение скорости. Отрицательное приращение. Как это так, камень, падая вниз будет разгонятся же! Да, будет. Его скорость, вектор его скорости, будет направлен вниз. А значит проекция этого вектора на ось z будет отрицательной. Всё правильно, мы получаем растущую по абсолютному значению проекцию вектора, направленного вниз. Мы знаем, начальное значение скорости — ноль, а значит

Интегрирование системы дифференциальных уравнений методом эйлера

Пользуясь тем что мы можем вычислить приращение скорости, посчитаем, какова будет скорость скажем через 0.1 секунды

Интегрирование системы дифференциальных уравнений методом эйлера

а ещё через 0.1 секунды

Интегрирование системы дифференциальных уравнений методом эйлера

и ещё через 0.1 секунды

Интегрирование системы дифференциальных уравнений методом эйлера

Хм, так мы можем продолжать довольно долго, но ограничимся промежутком времени в одну секунду

Интегрирование системы дифференциальных уравнений методом эйлера
Время, сСкорость, м/с
0.00.0
0.1-1.0
0.2-2.0
0.3-3.0
0.4-4.0
0.5-5.0
0.6-6.0
0.7-7.0
0.8-8.0
0.9-9.0
1.0-10.0

То есть, воспользовавшись формулой

Интегрирование системы дифференциальных уравнений методом эйлера

мы получили зависимость скорости точки от времени. А всего-то нужно взять значение скорости в текущий момент времени, и добавить к нему приращение, которое скорость получит в новый момент времени, отстоящий от текущего на Интегрирование системы дифференциальных уравнений методом эйлерасекунд. Приращение времени называется здесь шагом интегрирования. А приращение мы вычисляем как значение производной искомой функции в текущий момент времени умноженное на шаг. Просто? Да просто конечно. И та формула, которую я написал, имеет название название — явный метод Эйлера для численного решения дифференциальных уравнений. Это так называемая рекуррентная формула, когда новое значение вычисляемой величины зависит от её предыдущего значения.

А что же с высотой точки над Землей? Да всё аналогично, смотрите

Интегрирование системы дифференциальных уравнений методом эйлера

ведь проекция скорости есть производная от соответствующей координаты. Применим формулу метода Эйлера для этого уравнения, ведь скорость мы уже знаем

Интегрирование системы дифференциальных уравнений методом эйлера

и по этой формуле добавим в нашу таблицу ещё одну колонку

Интегрирование системы дифференциальных уравнений методом эйлера

Время, сСкорость, м/сВысота, м
0.00.0100.0
0.1-1.0100.0
0.2-2.099.9
0.3-3.099.7
0.4-4.099.4
0.5-5.099.0
0.6-6.098.5
0.7-7.097.9
0.8-8.097.2
0.9-9.096.4
1.0-10.095.5

Хм, ну, во-первых, заметно, что высота меняется у нас уже неравномерно, так как скорость со временем меняется. Теперь наша производная сама зависит от времени. Но уже на первом шаге, мы замечаем неладное — скорость уже есть, а вот высота по прежнему 100 метров. Как так?

Это вышло потому, что на каждом шаге мы полагаем производную (скорость) постоянной. Метод не дает информации о том, что происходит с решением между шагами. Соответственно накапливается погрешность, сравним полученное решение с точным

Интегрирование системы дифференциальных уравнений методом эйлера

Время, сСкорость, м/сВысота, мТочное решение, м
0.00.0100.0100.00
0.1-1.0100.099.95
0.2-2.099.999.80
0.3-3.099.799.55
0.4-4.099.499.20
0.5-5.099.098.75
0.6-6.098.598.20
0.7-7.097.997.55
0.8-8.097.296.80
0.9-9.096.495.95
1.0-10.095.595.00

Да, наш камень как будто зависает в воздухе. Численное решение отстает от аналитического, и чем дальше мы считаем, тем выше погрешность счета. Погрешность накапливается, так как на каждом шаге мы берем всё более и более грубое приближение. Что делать?

Во первых, можно уменьшить шаг. Скажем в 10 раз, пусть Интегрирование системы дифференциальных уравнений методом эйлерасекунды

Время, сСкорость, м/сВысота, мТочное решение, м
0.00.0100.0100.00
0.1-1.099.9699.95
0.2-2.099.8199.80
0.3-3.099.5799.55
0.4-4.099.2299.20
0.5-5.098.7898.75
0.6-6.098.2398.20
0.7-7.097.5997.55
0.8-8.096.8496.80
0.9-9.096.0095.95
1.0-10.095.0595.00

Уже лучше, погрешность в конце счета не превышает 0,05 метров, и это в 10 раз меньше предыдущего значения. Можно предположить, что уменьшив шаг ещё в 10 раз мы получим ещё более точное решение. Я схитрил, выводя значения только для 10 точек с шагом 0.1, на самом деле, чтобы получить такую таблицу нужны уже 100 итерации а не 10. При шаге 0.001 потребуется уже тысяча итераций, а результат будет таким

Время, сСкорость, м/сВысота, мТочное решение, м
0.00.0100.0100.00
0.1-1.099.950599.95
0.2-2.099.801099.80
0.3-3.099.551599.55
0.4-4.099.202099.20
0.5-5.098.752598.75
0.6-6.098.203098.20
0.7-7.097.553597.55
0.8-8.096.804096.80
0.9-9.095.954595.95
1.0-10.095.005095.00

Если вы попробовали выполнить эти расчеты в ручную, то понимаете теперь насколько они однообразны и трудоемки, если нужна высокая точность. Именно поэтому расцвет численного моделирования совпал с появлением компьютеров. Они как раз и нужны для того, чтобы быстро выполнять множество однообразных операций над числами.

Метод Эйлера самый простой из известных методов интегрирования дифференциальных уравнений. Из нашего простого примера видно, что погрешность метода прямо пропорциональна шагу интегрирования, и это действительно так. Такие методы называются методами 1-го порядка точности.

Точность расчетов даже на шаге 0.1 можно улучшить, если мы применим, скажем метод Рунге-Кутты 4-го порядка точности. Но это отдельная история.

Видео:Метод Эйлера. Решение систем ДУСкачать

Метод Эйлера. Решение систем ДУ

Заключение

Задумайтесь… Мы рассмотрели очень простой пример. Мы даже не применяли компьютер, но уже понимаем принцип, по которому работают те самые мощные в мире суперкомпьютеры, что моделируют ранние этапы жизни Вселенной. Конечно, там всё устроено гораздо сложнее, но принцип лежит этот же самый.

Представьте себе, какой мощный инструмент вы получаете в свои руки. Эта последняя статья, где мы не будем применять компьютер. Я обещал Octave. В следующий раз будет именно он.

💡 Видео

Численное интегрирование методом ЭйлераСкачать

Численное интегрирование методом Эйлера

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

МЗЭ 2022 Численное решение дифференциальных уравнений. Неявный метод Эйлера. Ложкин С.А.Скачать

МЗЭ 2022 Численное решение дифференциальных уравнений.  Неявный метод Эйлера. Ложкин С.А.

Численное решение задачи Коши методом ЭйлераСкачать

Численное решение задачи Коши методом Эйлера

Дифференциальное уравнение. Формула ЭйлераСкачать

Дифференциальное уравнение. Формула Эйлера

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Системы дифференциальных уравненийСкачать

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Системы дифференциальных уравнений

Численное решение системы дифференциальных уравнений(задачи Коши)Скачать

Численное решение системы дифференциальных уравнений(задачи Коши)

Системы дифференциальных уравнений.Метод исключения.Метод Эйлера.Скачать

Системы дифференциальных уравнений.Метод исключения.Метод Эйлера.

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

5 Численное решение дифференциальных уравнений Part 1Скачать

5  Численное решение дифференциальных уравнений Part 1

Системы дифференциальных уравненийСкачать

Системы дифференциальных уравнений

Линейные системы дифференциальных уравнений с постоянными коэффициентамиСкачать

Линейные системы дифференциальных уравнений с постоянными коэффициентами

МЗЭ 2022 Численное решение дифференциальных уравнений Метод Эйлера Ложкин С. А.Скачать

МЗЭ 2022 Численное решение дифференциальных уравнений  Метод Эйлера  Ложкин С. А.
Поделиться или сохранить к себе: