Обыкновенным дифференциальным уравнением называется уравнение вида
связывающее независимую переменную х, искомую функцию у = у(х) и ее производные у'(х), у»(х), … , (наличие хотя бы одной производной обязательно). Здесь — заданная функция своих аргументов.
Замечание:
Обозначения зависимой и независимой переменных через х и у, используемые в приведенном определении, не являются жесткими; часто в качестве независимой удобно брать переменную t, иными буквами обозначают и зависимую переменную (см. ниже пример 2).
В обыкновенном дифференциальном уравнении искомая функция у = у(х) есть функция одной независимой переменной x. Если искомая функция есть функция двух (и более) независимых переменных, то имеем дифференциальное уравнение с частными производными. В этой и двух следующих главах мы будем рассматривать только обыкновенные дифференциальные уравнения.
Простейшим дифференциальным уравнением является уравнение вида
где f(x) — известная непрерывная на некотором интервале (а, b) функция, а у = у(х) — искомая функция. С таким уравнением мы уже встречались в интегральном исчислении, когда поданной функции f(x) требовалось найти ее первообразную F(x). Как известно, всякая функция, удовлетворяющая уравнению (2), имеет вид
где F(x) — какая-нибудь первообразная для функции f(x) на интервале (а, Ь), а С — произвольная постоянная. Таким образом, искомая функция у = у(х) определяется из уравнения (2) неоднозначно.
Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например,
— дифференциальное уравнение 1-го порядка;
— дифференциальное уравнение 2-го порядка;
— дифференциальное уравнение пятого порядка.
Решением дифференциального уравнения n-го порядка на интервале (а, b) называется всякая функция имеющая на этом интервале производные до n-го порядка включительно и такая, что подстановка функции и ее производных в дифференциальное уравнение обращает последнее в тождество по х на интервале (а, b).
Например, функция у = sin х является решением дифференциального уравнения второго порядка
на интервале В самом деле, Подставив в данное уравнение найденные значения получим —
Задача:
Найти совпадающие решения двух дифференциальных уравнений (не решая самих уравнений):
График решения дифференциального уравнения называется интегральной кривой этого уравнения.
Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения. К составлению и интегрированию дифференциальных уравнений приводят многочисленные задачи как самой математики, так и других наук (физики, химии, биологии и т. п.).
Пример:
Найти такую кривую, чтобы тангенс угла наклона касательной в каждой ее точке численно равнялся ординате точки касания.
— уравнение искомой кривой. Как известно, tg а = у'(х) и, значит, определяющее свойство кривой есть
— дифференциальное уравнение первого порядка. Нетрудно видеть, что функция
Есть решение этого уравнения. Оно также имеет очевидное решение у = 0. Кроме того, решениями будут функции
где С — произвольная постоянная, так что уравнение имеет бесконечное множество решений.
Пример:
Найти закон прямолинейного движения материальной точки, движущейся с постоянным ускорением а.
Требуется найти формулу выражающую пройденный путь как функцию времени. По условию имеем
— дифференциальное уравнение второго порядка. Последовательно находим:
Произвольные постоянные можно определить, если положить
В самом деле, полагая t = to в первом из соотношений (*), получаем = Из второго соотношения (*) при t = tо имеем
Подставляя найденные значения C1 и С2 в выражение для функции s(t), приходим к известному закону движения материальной точки с постоянным ускорением:
- Эквивалентные дифференциальные уравнения. Задача Коши
- Теорема существования и единственности решения задачи Коши для уравнения у’ = f(x, у)
- Приближенные методы интегрирования уравнения у’ = f(x, у)
- Метод изоклин
- Метод последовательных приближений
- Численные методы решения задачи Коши Метод Эйлера
- Понятие о методе Рунге—Кутта
- Некоторые виды уравнений, интегрируемых в квадратурах
- Уравнения с разделяющимися переменными
- Уравнения, однородные относительно x и у
- Линейные дифференциальные уравнения
- Уравнение Бернулли
- Уравнения в полных дифференциалах
- Уравнение Риккати
- Дифференциальные уравнения, не разрешенные относительно производной
- Уравнение Лагранжа
- Уравнение Клеро
- Геометрические вопросы, связанные с дифференциальными уравнениями 1-го порядка. Ортогональные траектории
- Ортогональные траектории
- Дополнение к дифференциальным уравнениям первого порядка
- Интегральное уравнение эквивалентное задачи коши
- § 1. Дифференциальные уравнения первого порядка
- Решение задачи Коши
- Достаточное условие существования решения задачи Коши
- Достаточные условия существования и единственности решения задачи Коши
- Примеры с решением
- 📹 Видео
Видео:Дифференциальные уравнения. Теоретический билет 1. Задача Коши. Эквивалентное интегральное уравнениеСкачать
Эквивалентные дифференциальные уравнения. Задача Коши
Пусть имеем дифференциальное уравнение первого порядка
Если в этом уравнении удается выразить производную у’ через х и у, то получаем уравнение
разрешенное относительно производной. Здесь f — заданная функция своих аргументов.
Наряду с уравнением (1) рассматривают эквивалентное ему дифференциальное уравнение
или уравнение более общего вида
получаемое из (1′) путем умножения на некоторую функцию известные функции своих аргументов).
Два дифференциальных уравнения
называются эквивалентными в некоторой области D изменения величин х, у, у’, если всякое решение одного из этих уравнений является решением другого уравнения и наоборот. При преобразовании дифференциальных уравнений надо следить затем, чтобы преобразованное уравнение было эквивалентным исходному.
Если дифференциальное уравнение имеет решение, то, как правило, множество его решений оказывается бесконечным. Впрочем, дифференциальное уравнение
имеет только одно решение
y = х,
вообще не имеет действительных решений.
Чтобы выделить определенное решение уравнения (1), надо задать начальное условие, которое заключается в том, что при некотором значении Xо независимой переменной х заранее дано значение Yo искомой функции у(х):
Геометрически это означает, что задается точка через которую должна проходить искомая интегральная кривая.
Задачу отыскания решения у(х) уравнения (1), удовлетворяющего начальному условию (2), называют задачей Коши (начальной задачей) для уравнения (1).
Теорема существования и единственности решения задачи Коши для уравнения у’ = f(x, у)
Теорема:
Существования и единственности решения. Пусть имеем дифференциальное уравнение
и пусть функция f(x,y) определена в некоторой области D на плоскости хОу. Выберем произвольную точку Если существует окрестность этой точки, в которой функция f(x,y)
1) непрерывна по совокупности аргументов;
2) имеет ограниченную частную производную то найдется интервал на котором существует, и притом единственная, функция являющаяся решением уравнения (1) и принимающая при X = Xo значение Yо (рис. 1)
Геометрически это означает, что через точку проходит одна и только одна интегральная кривая уравнения (1).
Теорема 1 имеет локальный характер: она гарантирует существование единственного решения уравнения (1) лишь в достаточно малой окрестности точки х0. Из теоремы 1 вытекает, что уравнение (1) имеет бесконечное множество различных решений (например, одно решение, график которого проходит через точку (Xo, Yо); другое решение, когда график проходит через точку (Xо, Y1 ) и т. д.).
Пример:
у’ = х + у
f(x,y) = x + у
определена и непрерывна во всех точках плоскости хОу и имеет всюду В силу теоремы 1 через каждую точку (Xо, Yо) плоскости хОу проходит единственная интегральная кривая этого уравнения.
Пример:
определена и непрерывна на всей плоскости хОу. Здесь
так что второе условие теоремы 1 нарушается в точках оси Ох. Нетрудно проверить, что функция
где С — любая постоянная, является решением данного уравнения. Кроме того, уравнение имеет очевидное решение
Если искать решения этого уравнения, соответствующие условию у(0) = 0, то таких решений найдется бесчисленное множество, а частности, следующие (рис. 2):
Таким образом, через каждую точку оси Ох проходят по крайней мере две интегральные кривые и, следовательно, в точках Этой оси нарушается единственность.
Если взять точку М1 (1,1), то в достаточно малой ее окрестности выполнены все условия теоремы 1. Следовательно, через данную точку в малом квадрате проходит единственная интегральная кривая
уравнения Если квадрат взять достаточно большим (подумайте, каким), то в нем единственность решения уже не будет иметь места. Это подтверждает локальный характер теоремы 1.
Теорема 1 дает достаточные условия существования единственного решения уравнения у’ = f(x,y). Это означает, что может существовать единственное решение у = у(х) уравнения у’ = f(x, у), удовлетворяющее условию хотя в точке (Xo, Yо) не выполняются условия 1) или 2) теоремы или оба вместе.
Пример:
В точках оси Ох функции разрывны, причем
Но через каждую точку (Хо, 0) оси Ох проходит единственная интегральная кривая
Замечание:
Если отказаться от ограниченности то получается следующая теорема существования решения.
Теорема:
Если функция f(x, у) непрерывна в некоторой окрестности точки (х0, уо), то уравнение у’ = f(x, у) имеет в этой окрестности по крайней мере одно решение принимающее при х = х0 значение у0.
Задача:
Найти интегральную кривую уравнения
проходящую через точку О (0,0).
Задача:
Найти решение задачи Коши
Определение:
Общим решением дифференциального уравнения
в некоторой области существования и единственности решения задачи Коши называется однопараметрическое семейство S функций зависящих от переменной х и одной произвольной постоянной С (параметра), такое, что
1) при любом допустимом значении постоянной С функция является решением уравнения (1):
2) каково бы ни было начальное условие можно подобрать такое значение С0 постоянной С, что решение будет удовлетворять начальному условию
При этом предполагается, что точка (Хо, Уо) принадлежит области существования и единственности решения задачи Коши.
Пример:
Показать, что общим решением дифференциального уравнения
у’ = 1
у = х + С,
где С — произвольная постоянная.
В данном случае f(x, у) = 1, и условия теоремы 1 выполняются всюду. Следовательно, через каждую точку (Хо, Уо) плоскости хОу проходит единственная интегральная кривая данного уравнения.
Проверим, что функция
у = х + С
удовлетворяет условиям 1) и 2), содержащимся в определении общего решения. Действительно, при любом С имеем
у’ = (х + С)’ = 1,
так что у = х + С есть решение данного уравнения. Потребовав, чтобы при Х = Хо решение принимало значение Уо, приходим к соотношению Уо = Хо + Со. откуда
Решение у = х + Уо — Хо, или
удовлетворяет поставленному начальному условию.
Частным решением дифференциального уравнения (1) называется решение, получаемое из общего при каком-либо конкретном значении произвольной постоянной С (включая ). Таким образом, общее решение этого дифференциального уравнения можно определить как множество всех частных решений уравнения.
В процессе интегрирования дифференциального уравнения мы часто приходим к уравнению
неявно задающему общее решение уравнения. Уравнение (2) называют общим интегралом дифференциального уравнения (1).
где — некоторое конкретное значение постоянной С, называется частным интегралом.
Замечание:
Название происходит от того, что для простейшего дифференциального уравнения вида
его общее решение действительно записывается при помощи обычного неопределенного интеграла
Пример:
Общий интеграл уравнения
имеет следующий вид
В дальнейшем для краткости мы будем иногда говорить, что решение уравнения проходит через некоторую точку если точка лежит на графике этого решения.
Определение:
дифференциального уравнения (1) называется особым, если в каждой его точке нарушается свойство единственности, т. е. если через каждую его точку кроме этого решения проходит и другое решение уравнения (1), не совпадающее с в сколь угодно малой окрестности точки .
График особого решения называют особой интегральной кривой уравнения. Геометрически это — огибающая семейства интегральных кривых дифференциального уравнения, определяемых его общим интегралом.
Если для дифференциального уравнения (1) в некоторой области D на плоскости хОу выполнены условия теоремы 1, то через каждую точку проходит единственная интегральная кривая уравнения. Эта кривая входит в однопараметрическое семейство кривых
образующих общий интеграл уравнения (1), и получается из этого семейства при конкретном значении параметра С, т.е. является частным интегралом уравнения (1). Никаких других решений, проходящих через точку , здесь быть не может. Следовательно, для существования особого решения у уравнения (1) необходимо, чтобы не выполнялись условия теоремы 1. В частности, если правая часть уравнения (1) непрерывна в рассматриваемой области D, то особые решения могут проходить только через те точки, где производная становится бесконечной.
Напомним, что огибающей семейства кривых называется такая кривая, которая в каждой своей точке касается некоторой кривой семейства и каждого отрезка которой касается бесконечное множество кривых из этого семейства.
Например, для уравнения
функция непрерывна всюду, но производная обращается в бесконечность при у = 0, т. е. на оси Ох плоскости хОу. Уравнение (3) имеет общее решение
— семейство кубических парабол — и очевидное решение
проходящее через те точки, где производная не ограничена. Решение — особое, так как через каждую его точку проходит и кубическая парабола, и сама эта прямая у = 0 (см. рис. 2). Таким образом, в каждой точке решения нарушается свойство единственности. Особое решение не получается из решения ни при каком числовом значении параметра С (включая ).
Из теоремы 1 можно вывести только необходимые условия для особого решения. Множество тех точек, где производная не ограничена, если оно является кривой, может и не быть особым решением уже потому, что эта кривая, вообще говоря, не является интегральной кривой уравнения (1). Если, например, вместо уравнения (3) взять уравнение
то в точках прямой у = 0 по-прежнему нарушается условие ограниченности производной , но эта прямая, очевидно, не является интегральной кривой уравнения (4).
Итак, чтобы найти особые решения уравнения (1), надо
1) найти множество точек, где производная обращается в бесконечность;
2) если это множество точек образует одну или несколько кривых, проверить, являются ли они интегральными кривыми уравнения (1);
3) если это интегральные кривые, проверить, нарушается ли в каждой их точке свойство единственности.
При выполнении всех этих условий найденная кривая представляет собой особое решение уравнения (1).
Задача:
Найти особые решения уравнения
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Приближенные методы интегрирования уравнения у’ = f(x, у)
Метод изоклин
Пусть имеем дифференциальное уравнение
где функция f(x, у) в некоторой области D на плоскости хОу удовлетворяет условиям теоремы 1. Это уравнение определяет в каждой точке (х, у) области D значение у’, т. е. угловой коэффициент касательной к интегральной кривой в этой точке. Говорят, что уравнение (1) определяет в области D поле направлений. Чтобы его построить, надо в каждой точке представить с помощью некоторого отрезка направление касательной к интегральной кривой в этой точке, определяемое значением
Совокупность этих отрезков дает геометрическую картину поля направлений. Задача интегрирования дифференциального уравнения (1) может быть теперь сформулирована так: найти такую кривую, чтобы касательная к ней в каждой точке имела направление, совпадающее с направлением поля в этой точке. Такое истолкование дифференциального уравнения и его интегрирования дает графический способ решения уравнения.
Для построения интегральных кривых пользуются изоклинами. Изоклиной называется множество всех точек плоскости хОу, в которых касательные к искомым интегральным кривым имеют одно и то же направление (у’ = const).
Из этого определения следует, что семейство изоклин дифференциального уравнения (1) задается уравнением
где к — числовой параметр. Если придать параметру к близкие числовые значения, можно найти достаточно густую сеть изоклин и приближенно построить интегральные кривые дифференциального уравнения.
Пример:
по способу изоклин.
Семейство изоклин данного уравнения определяется уравнением
Полагая к = 0, + 1, — 1,…, получаем изоклины
по которым строим интегральные кривые уравнения (рис. 4).
определяет множество возможных точек экстремума интегральных кривых (прямая x = 0 в примере 1).
Для большей точности построения интегральных кривых определяют направление вогнутости и точки перегиба этих кривых (если такие точки существуют). Для этого находят у» в силу уравнения (1):
Знак правой части определяет знак у», т. е. направление вогнутости интегральных кривых. Линия, заданная уравнением
есть множество всех возможных точек перегиба интегральных кривых.
В примере 1 имеем
поэтому все интегральные кривые обращены вогнутостью вверх, и точек перегиба интегральных кривых нет.
Метод последовательных приближений
Пусть имеем дифференциальное уравнение
где функция f(x, у) в некоторой области D изменения х, у удовлетворяет условиям теоремы 1, и пусть точка . Решение задачи Коши
равносильно решению некоторого интегрального уравнения, т. е. уравнения, в которое неизвестная функция входит под знаком интеграла. В самом деле, пусть
— решение уравнения (2), заданное в некоторой окрестности точки и удовлетворяющее начальному условию (3). Тогда при имеет место тождество
Проинтегрируем это тождество по х
Отсюда учитывая (3), получаем
так что решение у(х) задачи Коши удовлетворяет интефальному уравнению
Обратно: если непрерывная функция удовлетворяет интегральному уравнению (4), то, как легко проверить, у(х) является решением задачи Коши (2)-(3).
Решение интегрального уравнения (4) для всех х, достаточно близких к , может быть построено методом последовательных приближений по формуле
причем в качестве можно взять любую непрерывную на отрезке функцию, в частности,
Пример:
Методом последовательных приближений решить задачу Коши
Сводим данную задачу к интегральному уравнению
Выбирая за нулевое приближение функцию
Легко видеть, что функция есть решение задачи.
Видео:Пример 65. Решить задачу Коши (диффуры)Скачать
Численные методы решения задачи Коши Метод Эйлера
Пусть требуется найти приближенное решение дифференциального уравнения
удовлетворяющее начальному условию
Будем предполагать, что в некотором прямоугольнике функция f(x, у) непрерывна и имеет непрерывные частные производные достаточно высокого порядка по всем аргументам, так что решение задачи Коши (1)-(2) существует, единственно и является функцией, дифференцируемой достаточное число раз.
Численное решение задачи (1)-(2) состоит в построении таблицы приближенных значений решения задачи в точках Чаще всего выбирают Точки Хк называют узлами сетки, а величину h > 0 — шагом сетки. Так как по определению производная есть предел разностного отношения то, заменяя производную этим отношением, вместо дифференциального уравнения (1) получим разностное уравнение (разностную схему Эйлера)
Отсюда последовательно находим значения учитывая, что — заданная величина.
В результате вместо решения у = у(х) мы находим функцию
дискретного аргумента (сеточную функцию), дающую приближенное решение задачи (1)-(2). Геометрически искомая интегральная кривая у = у(х), проходящая через точку заменяется ломаной Эйлера с вершинами в точках (см. рис. 5).
Метод Эйлера относится к группе одно-шаговых методов, в которых для вычисления точки требуется знание только предыдущей вычисленной точки Для оценки погрешности метода на одном шаге сетки разложим точное решение у = у(х) в окрестности узла по формуле Тейлора
Сравнение формул (4) и (5) показывает, что они совпадают до членов первого порядка по h включительно, а погрешность формулы (4) равна Поэтому говорят, что метод Эйлера имеет первый порядок.
Пример:
Методом Эйлера решить задачу Коши
на отрезке |0; 0,5] с шагом h = 0,1.
В данном случае Пользуясь формулой (4),
и т. д. Результаты вычислений сведем в таблицу
Замечание:
Если рассмотреть задачу Коши
на любом отрезке [0, a] с любым шагом h > 0, то получим так что в этом случае ломаная Эйлера «распрямляется» и совпадает с прямой у = х + 1 — точным решением поставленной задачи Коши.
Видео:Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2Скачать
Понятие о методе Рунге—Кутта
Метод Эйлера весьма прост, но имеет низкую точность. Точность решения можно повысить путем усложнения разностной схемы. Весьма распространенными на практике являются схемы Рунге—Кутта.
Пусть опять требуется решить задачу Коши (1)-(2). Будем строить таблицу приближенных значений решения у = у(х) уравнения (1) в точках (узлах сетки).
Рассмотрим схему равноотстоящих узлов шаг сетки. В методе Рунге—Кутта величины вычисляются по следующей схеме
Видео:Решить интегральное уравнениеСкачать
Некоторые виды уравнений, интегрируемых в квадратурах
В общем случае, даже зная, что решение уравнения существует, отыскать его довольно трудно. Однако существуют некоторые виды дифференциальных уравнений, методы получения решений которых особенно просты (при помощи интегралов от элементарных функций). Рассмотрим некоторые из них.
Уравнения с разделяющимися переменными
называется дифференциальным уравнением с разделенными переменными. Здесь f1(y), f2(x) — известные непрерывные функции своих аргументов.
Покажем, как найти решение этого уравнения. Пусть — первообразные функции соответственно. Равенство (1) равносильно тому, что дифференциалы этих функций должны совпадать
Отсюда следует, что
где С — произвольная постоянная.
Разрешая последнее уравнение (2) относительно у, получим функцию (может быть, и не одну)
которая обращает уравнение (1) в тождество и значит, является его решением.
— уравнение с разделенными переменными. Записав его в виде
и интегрируя обе части, найдем общий интеграл данного уравнения:
в котором коэффициенты при дифференциалах распадаются на множители, зависящие только от x и только от у, называется дифференциальным уравнением с разделяющимися переменными, так как путем деления на оно приводится к уравнению с разделенными переменными
Пример:
Деля обе част уравнения на приведем его к виду
Интегрируя обе части полученного равенства, найдем
Заметим, что деление на может привести к потере решений, обращающих в нуль произведение .
Например, разделяя переменные в уравнении
а после интегрирования —
(здесь С может принимать как положительные, так и отрицательные значения, но При делении на у потеряно решение
которое может быть включено в общее решение у = Сх, если постоянной С разрешить принимать значение С = 0.
Если считать переменные х и у равноправными, то уравнение
теряющее смысл при х = 0, надо дополнить уравнением
которое имеет очевидное решение х = 0.
В общем случае наряду с дифференциальным уравнением
следует рассматривать уравнение
используя уравнение (4′) там, где уравнение (4) не имеет смысла, а уравнение (4′) имеет смысл.
Некоторые дифференциальные уравнения путем замены переменных могут быть приведены к уравнениям с разделяющимися переменными. Например, уравнение вида
где f(x) — непрерывная функция своего аргумента, a, b, с — постоянные числа, подстановкой z = ах + by + с преобразуется в дифференциальное уравнение с разделяющимися переменными:
После интегрирования получаем
Заменяя в последнем соотношении z на ах + by + с, найдем общий интеграл уравнения (5).
Пример:
Положим z = x + y, тогда
Интегрируя, находим или
Подставляя вместо z величину х + у, получаем общее решение данного уравнения
Пример:
Известно, что скорость радиоактивного распада пропорциональна количеству х еще не распавшегося вещества. Найти зависимость х от времени t, если в начальный момент имелось вещества.
Дифференциальное уравнение процесса
Здесь к > 0 — постоянная распада — предполагается известной, знак «-» указывает на уменьшение х при возрастании t. Разделяя переменные в уравнении (») и интегрируя, получаем
Учитывая начальное условие находим, что поэтому
Любой процесс (не только радиоактивный распад), при котором скорость распада пропорциональна количеству еще не прореагировавшего вещества, описывается уравнением (*). Уравнение
отличающееся лишь знаком правой части от уравнения (*), описывает лавинообразный процесс размножения, например «размножение» нейтронов в цепных ядерных реакциях или размножение бактерий в предположении, что скорость их размножения пропорциональна наличному числу бактерий. Решение уравнения (»»»), удовлетворяющее условию имеет вид
и в отличие от решения уравнения (**) возрастает с возрастанием t. Уравнения (*) и (***) можно объединить в одно
которое дает простейшую математическую модель динамики популяций (совокупности особей того или иного вида растительных или животных Организмов). Пусть y(t) — число членов популяции в момент времени t. Если предположить, что скорость изменения популяции пропорциональна величине популяции, то мы приходим к уравнению (****). Положим k=m-n, где m — коэффициент относительной скорости рождаемости, a n — коэффициент относительной скорости умирания. Тогда к > 0 при m > n и k
при к
Уравнение динамики популяции в этой модели имеет вид
Это так называемое логистическое уравнение — фундаментальное уравнение в демографии и в математической теории экологии. Оно применяется в математической теории распространения слухов, болезней и других проблемах физиологии и социологии. Разделяя переменные в последнем уравнении, получаем
и выражая у через t, окончательно получаем
Считая, что найдем уравнение логистической кривой
При а > 0 и А > 0 получаем, что Логистическая кривая содержит два параметра А и а. Для их определения надо иметь два дополнительных значения y(t) при каких-то t1 и t2.
Уравнения, однородные относительно x и у
Функция f(x, у) называется однородной функцией n-го измерения относительно переменных х и у, если при любом допустимом t справедливо тождество
Например, для функции
так что — однородная функция относительно переменных x и у второго измерения.
так что есть однородная функция нулевого измерения. Дифференциальное уравнение первого порядка
называется однородным относительно х и у, если функция f(x, у) есть однородная функция нулевого измерения относительно переменных х и у.
Пусть имеем дифференциальное уравнение
однородное относительно переменных х и у. Положив в тождестве f(tx, ty) = f(x, у), получим
т. е. однородная функция нулевого измерения зависит только от отношения аргументов. Обозначая видим, что однородное относительно переменных х и у дифференциальное уравнение всегда можно представить в виде
При произвольной непрерывной функции переменные не разделяются. Введем новую искомую функцию формулой Подставляя выражение в уравнение (6), получаем
Деля обе части последнего равенства на и интегрируя, находим
Заменяя здесь и на его значение получаем общий интеграл уравнения (6).
Пример:
Положим и уравнение преобразуется к виду
Интегрируя, найдем или
Пример:
Найти форму зеркала, собирающего пучок параллельно падающих на него лучей в одну точку.
Прежде всего, зеркало должно иметь форму поверхности вращения, так как только для поверхности вращения все нормали к поверхности проходят через ось вращения.
Выберем прямоугольную декартову систему координат так, чтобы лучи были параллельны оси Ох и чтобы точкой, в которой собирались бы отраженные лучи, явилось бы начало координат. Найдем форму сечения зеркала плоскостью хОу. Пусть уравнение сечения есть (рис.6). В точке М (х,у) падения луча L на зеркало проведем касательную BN к сечению и обозначим ее угол с осью Ох через а. Пусть N — точка пересечения этой касательной с осью Ох. По закону отражения углы NMO и BML равны. Нетрудно видеть, что угол МОР равен 2а. Так как то во всякой точке кривой выполняется соотношение
— дифференциальное уравнение, определяющее требуемый ход луча. Разрешая это уравнение относительно производной, получаем два однородных уравнения:
Первое из них путем замены преобразуется к виду
Потенцируя последнее соотношение и заменяя и через после несложных преобразований имеем
Полученное уравнение в плоскости хОу определяет семейство парабол, симметричных относительно оси Ох. фокусы всех этих парабол совпадают с началом координат. Фиксируя С и вращая параболу вокруг оси Ох, получаем параболоид вращения
Таким образом, зеркало в виде параболоида вращения решает поставленную задачу. Это свойство используется в прожекторах.
Замечание:
то уравнение (6) имеет вид
и интегрируется разделением переменных. Его общее решение
Если и обращается в нуль при значении то существует также решение или
(прямая, проходящая через начало координат).
Рассмотрим уравнения, приводящиеся к однородным. Уравнение
где — постоянные числа, при является однородным. Пусть теперь по крайней мере одно из чисел отлично от нуля. Здесь следует различать два случая.
- Определитель отличен от нуля. Введем новые переменные по формулам
где h и k — пока не определенные постоянные. Тогда Уравнение (7) преобразуется при этом в уравнение
Если выбрать h и k как решения системы линейных алгебраических уравнений
то получим однородное относительно уравнение
Заменяя в его общем интеграле найдем общий интеграл уравнения (7).
2. Определитель равен нулю. Система (8) в общем случае не имеет решения и изложенный выше метод неприменим. Но в этом случае т. е. уравнение (7) имеет вид
и приводится к уравнению с разделяющимися переменными подстановкой z = ax+by. Аналогичными приемами интегрируется уравнение
где f(w) — непрерывная функция своего аргумента.
Видео:ТФКП. Интегральная формула Коши. Примеры решений типовых задач. Решение контурных интегралов.Скачать
Линейные дифференциальные уравнения
Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и ее производной. В общем случае оно имеет вид
где коэффициенты уравнения А(х) и В(х) и его правая часть f(x) считаются известными функциями, заданными на некотором интервале
Если то это уравнение называется однородным, в противном случае оно называется неоднородным. Считая и деля обе части уравнения (9) на А(х), приведем (9) к виду
Теорема:
Если функции р(х) и q(x) непрерывны на отрезке то уравнение (10) всегда имеет единственное решение, удовлетворяющее начальному условию точка принадлежит полосе
Разрешая уравнение (10) относительно у’, приведем его к виду
где правая часть
удовлетворяет всем условиям теоремы 1: она непрерывна по совокупности переменных х и у и имеет ограниченную частную производную
в указанной полосе. Отсюда следует справедливость утверждения.
Линейное однородное уравнение, соответствующее уравнению (10), имеет вид
Оно интегрируется разделением переменных:
При делении на у потеряно решение однако оно может быть включено в найденное семейство решений (12), если считать, что С может принимать значение, равное нулю. Формула (12) дает общее решение уравнения (11) в указанной выше полосе
Для интегрирования неоднородного линейного уравнения
может быть применен так называемый метод вариации постоянной. Он основан на том, что общее решение уравнения (10) равно сумме общего решения уравнения (11) и какого-либо частного решения уравнения (10)
Подставляя в левую часть (11) вместо у сумму получим
С другой стороны, разность двух частных решений уравнения (10) является решением однородного уравнения (11)
Поэтому сначала интегрируем соответствующее однородное уравнение
общее решение которого имеет вид
где С — произвольная постоянная. Решение неоднородного уравнения (10) ищем в виде
где С(х) — новая неизвестная функция.
Вычисляя производную и подставляя значения и у в исходное уравнение (10), получаем
где С — новая произвольная постоянная интегрирования. Следовательно,
Это есть общее решение линейного неоднородного дифференциального уравнения (10).
В формуле (14) общего решения неопределенные интегралы можно заменить определенными интегралами с переменным верхним пределом:
Здесь поэтому общее решение уравнения (10) можно записать в виде
где роль произвольной постоянной играет начальное значение искомой функции у(х).
Формула (15) является общим решением уравнения (10) в форме Коши. Отсюда следует, что если р(х) и q(х) определены и непрерывны в интервале то и решение у(х) уравнения (10) с любыми начальными данными будет непрерывным и даже непрерывно дифференцируемым при всех конечных значениях х, так что интегральная кривая, проходящая через любую точку будет гладкой кривой в интервале
Пример:
соответствующее данному, проинтегрируем, разделяя переменные:
Решение исходного уравнения будем искать в виде
где С(х) — неизвестная функция. Находя и подставляя и у в (*), последовательно получаем:
где С — постоянная интегрирования. Из формулы (**) находим общее решение уравнения (*)
Частное решение неоднородного уравнения (*) легко усматривается. Вообще, если удается «угадать» частное решение линейного неоднородного уравнения, то разыскание его общего решения значительно упрощается.
Пример:
Рассмотрим дифференциальное уравнение, описывающее изменение силы тока при замыкании цепи постоянного электрического тока.
Если R — сопротивление цепи, Е — внешняя ЭДС, то сила тока I = I(t) постепенно возрастает от значения, равного нулю, до конечного стационарного значения
Пусть L — коэффициент самоиндукции цепи, роль которой такова, что при всяком изменении силы тока в цепи появляется электродвижущая сила, равная и направленная противоположно внешней ЭДС. На основании закона Ома, по которому в каждый момент t произведение силы тока на сопротивление равно фактически действующей ЭДС, получаем
Уравнение (*) есть линейное неоднородное уравнение относительно I(t). Нетрудно видеть, что его частным решением является функция
Общее решение соответствующего однородного уравнения
откуда общее решение неоднородного уравнения (*):
При t = 0 имеем I(0) = 0, поэтому так что окончательно
Отсюда видно, что сила тока при включении асимптотически приближается при к своему стационарному значению
Линейное неоднородное дифференциальное уравнение
может быть проинтегрировано также следующим приемом. Будем искать решение у(х) уравнения (10) в виде
где — неизвестные функции, одна из которых, например v(x), может быть выбрана произвольно. Подставляя у(х) в форме (16) в уравнение (10), после элементарных преобразований получим
Выберем в качестве v(x) любое частное решение уравнения
Тогда в силу (17) для u(х) получим уравнение
которое без труда интегрируется в квадратурах. Зная , найдем решение у(х) уравнения (10).
Пример:
Найти общее решение уравнения
Будем искать решение у(х) данного линейного неоднородного уравнения в виде
Подставляя в исходное уравнение, получим
Определим функцию v(x) как решение уравнения
Разделяя переменные, найдем
Выберем любое частное решение, например, отвечающее С = 1. Тогда из (17′) получим
откуда
Для общего решения исходного уравнения получаем выражение
Преимущество метода вариации постоянной заключается в том, что он переносится на линейные неоднородные дифференциальные уравнения высшего порядка.
Уравнение Бернулли
Некоторые дифференциальные уравнения путем замены переменных могут быть сведены к линейным. К числу таких уравнений относится уравнение Бернулли
Уравнение это предложено Я. Бернулли в 1695 г., метод решения опубликовал И. Бернулли в 1697 г.
При а = 1 получаем однородное линейное уравнение
При а = 0 — неоднородное линейное уравнение
Поэтому будем предполагать, что (для а нецелого считаем, что у > 0).
Подстановкой уравнение Бернулли приводится к линейному уравнению относительно функции z(x).
Однако уравнение Бернулли можно проинтегрировать сразу методом вариации постоянной. Это делается так. Сначала интегрируем уравнение
Его общее решение
Решение уравнения Бернулли будем искать в виде
где С(х) — новая неизвестная функция. Подставляя это выражение для у(х) в уравнение Бернулли, получаем
— уравнение с разделяющимися переменными относительно С(х). Интегрируя это уравнение,находим
где С — постоянная интегрирования. Тогда из формулы (*) получаем общий интеграл уравнения Бернулли
Замечание:
При а > 0 уравнение Бернулли имеет очевидное решение
Для интегрирования уравнения Бернулли
можно также воспользоваться подстановкой
где в качестве v(x) берется любое нетривиальное решение уравнения
а функция u(х) определяется как решение уравнения
Пример:
Найти решение уравнения Бернулли
Ищем решение у(х) уравнения в виде
Подставляя в исходное уравнение, получим
Выберем в качестве v(x) какое-нибудь ненулевое решение уравнения
и проинтегрируем его,
Поскольку нас интересует какое угодно частное решение, положим С = 1, т.е. возьмем Тогда для и(х) получим уравнение
интегрируя которое, найдем
Общее решение у(х) исходного уравнения определится формулой
Уравнения в полных дифференциалах
называется уравнением в полных дифференциалах, если левая часть уравнения представляет собой полный дифференциал некоторой функции u(х, у) двух независимых переменных х и у, т. е.
В этом случае u(х, у) = С будет общим интегралом дифференциального уравнения (18).
Будем предполагать, что функции М(х, у) и N(x, у) имеют непрерывные частные производные соответственно по у и по x в некоторой односвязной области D на плоскости хОу.
Теорема:
Для того чтобы левая часть М(х, у) dx + N(x, у) dy уравнения (18) была полным дифференциалом некоторой функции и(х, у) двух независимых переменных х и у, необходимо и достаточно, чтобы выполнялось тождество
Необходимость:
Предположим, что левая часть уравнения (18) есть полный дифференциал некоторой функции u(х, у), т. е.
тогда Дифференцируем первое соотношение по у, а второе по х:
Отсюда, в силу равенства смешанных производных, вытекает тождество
Необходимость (19) доказана.
Достаточность:
Покажем, что условие (19) является и достаточным, а именно, предполагая его выполненным, найдем функцию u(х, у) такую, что du = M(x, у) dx + N(x, у) dy, или, что то же,
Найдем сначала функцию u(х, у), удовлетворяющую первому условию (20). Интегрируя это равенство по х (считаем у постоянной), получаем
где — произвольная функция от у.
Подберем так, чтобы частная производная по у от функции и, определяемой формулой (21), была равна N(x,y). Такой выбор функции при условии (19) всегда возможен. В самом деле, из (21) имеем
Приравняв правую часть полученного равенства к N(x, у), найдем
Левая часть последнего равенства не зависит от x. Убедимся в том, что при условии (20) в его правую часть также не входит х. Для этого покажем, что частная производная по x от правой части (22) тождественно равна нулю. Имеем
Теперь, интегрируя равенство (22) по у, получим, что
где С — постоянная интегрирования. Подставляя найденное значение для в формулу (21), получим искомую функцию
полный дифференциал которой, как нетрудно проверить, равен
Приведенный прием построения функции u(х, у) составляет метод интегрирования уравнения (18), левая часть которого есть полный дифференциал.
Пример:
Проверить, что уравнение
является уравнением в полных дифференциалах, и проинтегрировать его.
В данном случае
Следовательно, уравнение (*) есть уравнение в полных дифференциалах. Теперь находим и (см. (21)):
Находя от функции и из (**) и приравнивая функции получаем
откуда и, следовательно,
Подставив найденное выражение для i в (**), найдем
— общий интеграл исходного уравнения.
Иногда можно найти такую функцию что
будет полным дифференциалом, хотя М dx + N dy может им и не быть. Такую функцию называют интегрирующим множителем. Можно показать, что для уравнения первого порядка
при определенных условиях на функции М(х, y) и N(x, у) интегрирующий множитель всегда существует, но отыскание его из условия
в общем случае сводится к интегрированию уравнения в частных производных, что составляет, как правило, задачу еще более трудную.
Задача:
Найти интегрирующий множитель для линейного дифференциального уравнения
Указание. Искать множитель в виде
Уравнение Риккати
где q(x), р(х), г(х) — известные функции, называется уравнением Риккати. Если р, q, г — постоянные, то оно интегрируется разделением переменных:
В случае, когда уравнение (1) оказывается линейным, в случае — уравнением Бернулли. В общем случае уравнение (1) не интегрируется в квадратурах.
Укажем некоторые свойства уравнения Риккати.
Теорема:
Если известно одно частное решение уравнения Риккати, то его общее решение может быть получено с помощью квадратур.
Пусть известно частное решение уравнения (1), тогда
Полагая новая искомая функция, в силу тождества (2) получаем
— уравнение Бернулли, которое интегрируется в квадратурах.
Пример:
Проинтегрировать уравнение Риккати
если известно его частное решение
для функции z(x) получаем
решением исходного уравнения будет функция
Частным случаем уравнения (1) является специальное уравнение Риккати:
где a, b, а — постоянные. При а = 0 имеем
и уравнение интегрируется разделением переменных.
При а = -2 получаем
Полагая — новая неизвестная функция, находим
Это уравнение однородное относительно х, z. Оно интегрируется в квадратурах.
Кроме а = 0 и а = -2 существует еще бесконечное множество других значений а, при которых уравнение Риккати (3) интегрируется в квадратурах. Они задаются формулой
При всех других значениях а решение уравнения Риккати (3) не выражается в квадратурах.
Замечание. Если же положить в уравнении (3)
где u = u(x) — новая неизвестная функция, то придем к уравнению второго порядка
решение которого может быть выражено в функциях Бесселя.
Видео:Видеоурок "Дифференциальные уравнения. Задача Коши"Скачать
Дифференциальные уравнения, не разрешенные относительно производной
Рассмотрим теперь общий случай уравнения первого порядка
не разрешенного относительно производной.
Уравнения, относящиеся к этому классу, весьма разнообразны, и поэтому в общем случае становится невозможным делать выводы о существовании и единственности решения, даже накладывая достаточно сильные ограничения на участвующие в уравнении функции (ограниченность, гладкость, монотонность и т. п.). Например, уравнение
вообще не имеет действительных решений. Для уравнения
решения суть прямые так что через каждую точку плоскости хОу проходят две взаимно перпендикулярные интегральные линии. Поле интегральных кривых уравнения получается наложением полей уравнений Если уравнение
удается разрешить относительно производной у’, то получаются уравнения вида
которые иногда могут быть проинтегрированы изложенными выше методами.
Введем понятие общего решения (интеграла) для уравнения (1). Допустим, что это уравнение в окрестности точки может быть разрешено относительно производной, т. е. распадается на уравнения
и пусть каждое из этих уравнений имеет общее решение
или общий интеграл
Совокупность общих решений (2) (или общих интегралов (3)) будем называть общим решением (общим интегралом) уравнения (1). Так, уравнение
распадается на два:
Их общие решения у = х + С, у = -х + С в совокупности составляют общее решение исходного уравнения . Общий интеграл этого уравнения часто записывают в виде
Однако не всегда уравнение (1) легко разрешимо относительно у’ и еще реже полученные после этого уравнения интегрируются в квадратурах. Рассмотрим некоторые методы интегрирования уравнения (1).
Пусть уравнение (1) имеет вид
причем существует по крайней мере один действительный корень этого уравнения. Так как это уравнение не содержит — постоянная. Интегрируя уравнение получаем
Но является корнем уравнения; следовательно,
— интеграл рассматриваемого уравнения.
2. Пусть уравнение (1) имеет вид
Если это уравнение трудно разрешить относительно у’, то бывает целесообразно ввести параметр t и заменить уравнение (5) двумя:
Следовательно, искомые интегральные кривые определяются уравнениями в параметрической форме
Пример:
Полагаем,
и параметрические уравнения искомых интегральных кривых:
Если уравнение (5) легко разрешимо относительно у, то обычно за параметр берут у’. Действительно, если то, полагая у’ = р, получаем так что
Параметрические уравнения интефальных кривых:
Исключая параметр р, получаем общий интеграл
Пример:
Разрешим уравнение относительно у:
Положим у’ = р, тогда
Таким образом, находим параметрические уравнения интегральных кривых
Параметр р здесь легко исключить. В самом деле, из первого уравнения системы находим
Первую часть второго уравнения преобразуем следующим образом:
— общее решение данного дифференциального уравнения.
3. Пусть уравнение (1) имеет вид
Если это уравнение трудно разрешить относительно у’, то, как и в предыдущем случае, целесообразно ввести параметр t и заменить уравнение (6) двумя:
Следовательно, интегральные кривые уравнения (6) определяются в параметрической форме уравнениями
Если уравнение (6) легко разрешимо относительно х:
то в качестве параметра удобно выбрать откуда
Пример:
Положим у’ = р. Тогда
В параметрической форме семейство интегральных кривых данного уравнения определяют уравнения
Уравнение Лагранжа
Уравнением Лагранжа называется дифференциальное уравнение вида
линейное относительно х и у. Здесь — известные функции.
Введя параметр получаем
— соотношение, связывающее переменные х, у и параметр р. Чтобы получить второе соотношение, нужное для определения х и у как функций параметра р, продифференцируем (8) по х:
Уравнение (10) линейно относительно х и и, следовательно, легко интегрируется, например, методом вариации постоянной. Получив общее решение
уравнения (10) и присоединив к нему уравнение
получим параметрические уравнения искомых интегральных кривых.
При переходе от уравнения (9) к (10) пришлось делить на . При этом теряются решения, для которых р постоянно, а значит,
Считая р постоянным, замечаем, что уравнение (9) удовлетворяется лишь в том случае, если р является корнем уравнения
Итак, если уравнение имеет действительные корни то к найденным выше решениям уравнения Лагранжа надо еще добавить решения
— это прямые линии.
Уравнение Клеро
Уравнением Клеро называется дифференциальное уравнение вида
Полагая у’ = р, получаем
Дифференцируя по х, имеем
откуда или и, значит, р = С, или
В первом случае, исключая р, найдем семейство прямых
— общее решение уравнения Клеро. Оно находится без квадратур и представляет собой однопараметрическое семейство прямых. Во втором случае решение определяется уравнениями
Можно показать, что, как правило, интегральная кривая (12) является огибающей найденного семейства прямых.
Пример:
Решить уравнение Клеро
Общее решение данного уравнения видно сразу:
Другое (особое) решение определяется уравнениями
Исключая параметр р, находим
— огибающую прямых
Для уравнения вида
через некоторую точку вообще говоря, проходит не одна, а несколько интегральных кривых, так как, разрешая уравнение относительно у’, мы, как правило, получаем не одно, а несколько действительных значений
и если каждое из уравнений в окрестности точки удовлетворяет условиям теоремы существования и единственности решения, то для каждого из этих уравнений найдется единственное решение, удовлетворяющее условию
Поэтому свойство единственности решения уравнения , удовлетворяющего условию обычно понимается в том смысле, что через данную точку по данному направлению проходит не более одной интегральной кривой уравнения .
Например, для решений уравнения
свойство единственности в этом смысле всюду выполнено, поскольку через каждую точку плоскости хОу проходят две интегральные кривые, но по различным направлениям. Для уравнения Клеро
(см. пример 4) через точку (0,0) проходят также две интегральные линии: прямая
входящая в общее решение этого уравнения, и парабола
причем эти линии имеют в точке (0,0) одно и то же направление:
Таким образом, в точке (0,0) свойство единственности нарушается.
Теорема:
Пусть имеем уравнение
и пусть в некоторой окрестности точки — один из действительных корней уравнения
функция удовлетворяет условиям:
1) непрерывна по всем аргументам;
2) производная существует и отлична от нуля;
3) существует ограниченная производная
Тогда найдется отрезок на котором существует единственное решение у = у(х) уравнения удовлетворяющее условию для которого
Геометрические вопросы, связанные с дифференциальными уравнениями 1-го порядка. Ортогональные траектории
Общее решение дифференциального уравнения 1-го порядка определяет семейство плоских кривых, зависящее от одного параметра С.
Поставим теперь в некотором смысле обратную задачу: дано однопараметрическое семейство кривых
и требуется составить дифференциальное уравнение, для которого будет общим решением.
Итак, пусть дано соотношение
где С — параметр. Дифференцируя (1) по х, получим
Если правая часть (2) уже не содержит С, то формула (2) будет представлять дифференциальное уравнение семейства кривых (1). Например, если будет дифференциальным уравнением семейства прямых у = х + С.
Пусть теперь правая часть (2) содержит С. Разрешая соотношение (1) относительно С, определим С как функцию х и у:
Подставляя это выражение для С в формулу (2), получим дифференциальное уравнение 1-го порядка
Нетрудно убедиться в том, что представляет собой общее решение уравнения (4).
Если соотношение между величинами х, у и С задано в виде
то, дифференцируя его по х, получим
Исключая С из соотношений (5) и (6), приходим к уравнению
Можно показать, что (5) является общим интегралом уравнения (7).
Ортогональные траектории
В ряде прикладных вопросов встречается следующая задача. Дано семейство кривых
Требуется найти такое семейство
чтобы каждая кривая семейства Ф(х, у, С) = 0, проходящая через точку (х, у), пересекалась в этой точке кривой семейства под прямым углом, т. е. чтобы касательные к кривым семейства в точке (х, у) были ортогональны (рис.8). Семейство называется семейством ортогональных траекторий к (и наоборот). Если, например, кривые семейства Ф = 0 — силовые линии некоторого силового поля, то ортогональные траектории — эквипотенциальные линии.
Аналитически это означает следующее. Если
есть дифференциальное уравнение семейства
то дифференциальное уравнение траекторий, ортогональных к семейству Ф = 0, имеет вид
(угловые коэффициенты касательных к кривым семейств в каждой точке должны быть связаны условием ортогональности
Таким образом, чтобы найти ортогональные траектории к семейству 0, надо составить дифференциальное уравнение этого семейства и заменить в нем Интегрируя полученное таким образом уравнение, найдем семейство ортогональных траекторий.
Пример:
Найти ортогональные траектории семейства
окружностей с центром в начале координат.
Составляем дифференциальное уравнение семейства (8). Дифференцируя (8) по х, получим
Это дифференциальное уравнение данного семейства. Заменив в нем найдем дифференциальное уравнение семейства ортогональных траекторий:
Интегрируя последнее уравнение, получаем, что искомыми ортогональными траекториями будут полупрямые (рис. 9)
Видео:Простейшие интегральные уравненияСкачать
Дополнение к дифференциальным уравнениям первого порядка
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Задача Коши ДУ I п. 1. Caushy`s ProblemСкачать
Интегральное уравнение эквивалентное задачи коши
Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах…
Часть II. Глава IV. Обыкновенные дифференциальные уравнения
Видео:Решить интегральное уравнение (ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ) Свёртка функций, Умножение изображенийСкачать
§ 1. Дифференциальные уравнения первого порядка
1. Основные понятия. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функцию и производные (или дифференциалы) этой функции. Если независимая переменная одна, то уравнение называется обыкновенным; если же независимых переменных две или больше, то уравнение называется дифференциальным уравнением в частных производных.
Наивысший порядок производной, входящей в уравнение, называется порядком дифференциального уравнения. Например:
1) х²у’ + 5xy = у² – обыкновенное дифференциальное уравнение первого порядка;
2) – обыкновенное дифференциальное уравнение второго порядка;
3) y’³ + y»y»’ = х – обыкновенное дифференциальное уравнение третьего порядка;
4) F (х, у, у’, у») = 0 – общий вид обыкновенного дифференциального уравнения второго порядка;
5) – уравнение в частных производных первого порядка.
В этом параграфе рассматриваются обыкновенные дифференциальные уравнения первого порядка, т. е. уравнения вида F (х, у, у’) = 0 или (в разрешенном относительно у’ виде) y’ = f(х, у).
Решением дифференциального уравнения называется такая дифференцируемая функция у = φ (x), которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество. Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения.
Общим решением дифференциального уравнения первого порядка у’ = f(x, у) в области D называется функция у = φ(x, C), обладающая следующими свойствами: 1) она является решением данного уравнения при любых значениях произвольной постоянной С, принадлежащих некоторому множеству; 2) для любого начального условия у(х0) = у0 такого, что (x0; y0) ∈ 0, существует единственное значение С = С0, при котором решение у = φ(x, C0) удовлетворяет заданному начальному условию.
Всякое решение у = φ(x, C0), получающееся из общего решения у = φ (x, C) при конкретном значении С = С0, называется частным решением.
Задача, в которой требуется найти частное решение уравнения y’ = f(х, у) удовлетворяющее начальному условию у(х0) = y0, называется задачей Коши.
Построенный на плоскости хОу график всякого решения у = φ(х) дифференциального уравнения называется интегральной кривой этого уравнения. Таким образом, общему решению у = φ(х, С) на плоскости хОу соответствует семейство интегральных кривых, зависящее от одного параметра – произвольной постоянной С, а частному решению, удовлетворяющему начальному условию y(x0) = y0, – кривая этого семейства, проходящая через заданную точку М0(x0; у0).
Если функция f(х, у) непрерывна и имеет непрерывную производную в области D, то решение дифференциального уравнения у’= f (х, у) при начальном условии у(х0) = у0 существует и единственно, т. е. через точку (x0; y0) проходит единственная интегральная кривая данного уравнения (теорема Коши).
Особым решением называется такое решение, во всех точках которого условие единственности не выполняется, т. е. в любой окрестности каждой точки (х; у) особого решения существуют по крайней мере две интегральные кривые, проходящие через эту точку.
Особые решения не получаются из общего решения дифференциального управления ни при каких значениях произвольной постоянной С (в том числе и при С = ± ∞).
Особым решением является огибающая семейства интегральных кривых (если она существует), т. е. линия, которая в каждой своей точке касается по меньшей мере одной интегральной кривой.
Например, общее решение уравнения записывается в виде у = sin (х + С). Это семейство интегральных кривых имеет две огибающие: у = 1 и у = -1, которые и будут особыми решениями.
2. Дифференциальные уравнения с разделяющимися переменными. Дифференциальное уравнение вида
относится к типу уравнений с разделяющимися переменными. Если ни одна из функций f1(x), f2(y), φ1(x), φ2(y) не равна тождественно нулю, то в результате деления исходного уравнения на f2 (x) φ1 (y) оно приводится к виду
Почленное интегрирование последнего уравнения приводит к соотношению
которое и определяет (в неявной форме) решение исходного уравнения. (Решение дифференциального уравнения, выраженное в неявной форме, называют интегралом этого уравнения.)
507. Решить уравнение х(у²-4)dx + y dy = 0.
△ Разделив обе части уравнения на у² – 4 ≠ 0, имеем
x² + ln|у² – 4| = ln|C|, или у² – 4 = Сe -λ²
Это общее решение данного дифференциального уравнения.
Пусть теперь у² – 4 = 0, т. е. у = ± 2. Непосредственной подстановкой убеждаемся, что у = ±2 – решение исходного уравнения. Но оно не будет особым решением, так как его можно получить из общего решения при С = 0. ▲
508. Найти частный интеграл уравнения у’ cos х = у / ln у, удовлетворяющий начальному условию y(0) = l.
△ Полагая , перепишем данное уравнение в виде
Проинтегрируем обе части уравнения:
, или
Используя начальное условие у = 1 при х = 0, находим С = 0. Окончательно получаем
▲
509. Найти общий интеграл уравнения у’ = tg x tg y.
△ Полагая и разделяя переменные, приходим к уравнению ctg у dy = tg х dx. Интегрируя, имеем
, или ln|sin у| = -ln|cos x| + ln С.
Отсюда находим sin y = C/cos x, или sin y / cos x = С (общий интеграл). ▲
510. Найти частное решение дифференциального уравнения (l + x²)dy + y dx = 0 при начальном условии у(1) = 1.
△ Преобразуем данное уравнение к виду . Интегрируя, получим
, или ln |y| = – arctg x + С
Это и есть общий интеграл данного уравнения.
Теперь, используя начальное условие, найдем произвольную постоянную С; имеем ln 1 = — arctg 1 + С, т. е. С = π/4. Следовательно,
ln у = – arctg х + π/4,
откуда получаем искомое частное решение y = e π/4 – arctg x . ▲
Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах… Ч. II. Стр. 117-119.
Видео:Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 13.4. Существов. и единств. решения ДУСкачать
Решение задачи Коши
Содержание:
Задача Коши. Одной из важнейших задач в теории дифференциальных уравнений является так называемая задача Коши. Для уравнения (2),
задача Коши, или начальная задача, ставится следующим образом: среди всех решений уравнения (2) найти такое решение
в котором функция у(х) принимает заданное числовое значение Уо при заданное числовом значении х0 независимой переменной х, т. е.
где и — заданные числа, так что решение (36) удовлетворяет условию:
При этом число называется начальным значением искомой функции, а число — начальным значением независимой переменной. В целом же числа и называются начальными данными решения (36), а условие (38) —начальным условием этого решения.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Задачу Коши геометрически можно сформулировать так: среди всех интегральных кривых уравнения (2)’найти tj (рис. 6), которая проходит через заданную точку
Будем говорить, что задача Коши с начальными условиями (38) имеет единственное решение, если существует та кое число , что в интервале — определено решение такое, что и не существует решения, определенного в этом же интервале и не совпадающего с решением хотя бы в одной точке интервала
отличной от точки В противном случае, т. е. когда задача Коши с начальным условием (38) имеет не одно решение или же совсем не имеет решений, мы будем говорить, что в точке нарушается единственность решения задачи Коши.
Возможно вам будут полезны данные страницы:
Вопрос о единственности решения задачи Коши представляет исключительный интерес как для самой теории дифференциальных уравнений, так и для ее многочисленных приложений, ибо, зная, что решение задачи Коши единственно, мы, найдя решение, удовлетворяющее заданным начальным условиям, уверены, что других решений, удовлетворяющих тем же начальным условиям, нет.
В вопросах естествознания эго приводит к тому, что мы получаем вполне определенный, единственный закон явления, определяемый только дифференциальным уравнением и начальным условием. Иллюстрацией сказанного может служить хотя бы пример 1, рассмотренный во введении.
Заметим, что в простейшем случае задача Коши встречается нам уже в интегральном исчислении, именно там, по существу, доказывается, что если функция f(x) непрерывна в интервале (а, Ь),то единственным решением уравнения
принимающим значение принадлежит интервалу —любое заданное число, является функция*
Эго решение определено ео всем интервале (а, Ь).
Из формулы (40) легко усмотреть характер зависимости решения рассматриваемой задачи Коши как от независимой переменной, так и от начальных данных.
Прежде всего из курса анализа известно, что решение (40) является непрерывно дифференцируемой** функцией от независимой переменной х. Геометрически это означает, что через точку проходит одна и только одна интегральная кривая. Эта интегральная кривая гладкая***. Она пересекается со всякой -прямой, параллельной оси Оу, не более чем в одной точке.
Из формулы (40) видно также, что решение задачи К о ш и дл я простейшего дифференциального уравнения (39) я в-ляется непрерывной и даже непрерывно дифференцируемой функцией начальных данных
Особые случаи задачи Коши. При постановке задачи Коши с начальными данными мы неявно предполагали, что числа х0 и уо конечны и что правая часть уравнения (2) определена и конечна в точке , т. е. уравнение (2) задает в точке определенное направление поля, причем последнее не параллельно оси Оу. Если правая часть уравнения (2) обращается в точке в бесконечность, то следует рассматривать перевернутое уравнение (.
и искать решение (рис. 7), удовлетворяющее начальному условию: . Единственная «особенность» решения этой задачи Коши состоит только в том, что в точке касательная к интегральной кривой параллельна оси Оу.
Совсем другое положение мы будем иметь, если в точке правая часть уравнения (2) по определена. Предположим, что f(x, у) обращается в точке в неопределенность вида Тогда обычная постановка задачи Коши теряет смысл, так как через точку не проходит ни одна интегральная кривая.
В этом случае задача Коши ставится так:
найти решение вида [или обладающее свойством (28) [или (29)], т. е. найти решение, примыкающее к точке
Здесь, так же как и в основном случае задачи Коши, возникают вопросы существования и единственности решения.
Кроме того, здесь возникают и дополнительные вопросы:
1) имеют ли решения, примыкающие к точке , определенную касательную в этой точке? Дело в том, что само уравнение (2) в этом случае не предписывает никакого определенного направления касательной в такой точке ;
2) если интегральные кривые примыкают к точке с определенными направлениями касательной, то каковы эти направления? Сколько кривых входит по данному направлению? В примерах 3 и 4, рассмотренных в п. 4, все интегральные кривые уравнения (30) примыкают к точке (0,0) (где правая часть обращается в о — неопределенность вида ), имея в ней каждая свою касательную, в то время как ни одна из интегральных кривых уравнения (34) не примыкает к точке (0,0), так что для этого уравнения задача Коши с начальными данными не имеет ни одного решения.
В некоторых случаях возникает необходимость искать решения , удовлетворяющие условиям:
Указанные выше особые случаи задачи Коши исследуются в аналитической теории дифференциальных уравнений и в качественной теории дифференциальных уравнений. Во всех случаях задачи Коши наряду с вопросами существования и единственности возникают /вопросы о свойствах решения задачи Коши как функции независимой переменной (аналитический вид, дифференциальные и геометрические свойства и особенности «поведения во всей области существования) и как функции начальных данных. Рассмотрение этих вопросов составляет одну из основных задач теории дифференциальных уравнений.
Достаточное условие существования решения задачи Коши
Предположим, что правая часть уравнения (2) определена и непрерывна в некоторой области G изменения х и у. Тогда, как уже отмечалось раньше (п. 4), уравнение (2) определяет некоторое поле направлений, причем в силу только что сделанного предположения о непрерывности правой части уравнения (2) это ноле направлений непрерывно, так что направления в двух достаточно близких точках разнятся сколь угодно мало. Заметим, что из сделанного предположения о непрерывности
правой части уравнения (2) следует, что всякое решение этого уравнения (если оно существует) будет непрерывно дифференцируемым, так что всякая интегральная кривая будет гладкой. Всякая интегральная кривая, как уже было сказано в п. 4., обладает чем свойством, что в каждой ее точке направление карательной совпадает с направлением поля, определяемым дифференциальным уравнением в этой точке. Попытаемся, пользуясь этим свойством интегральной кривой, найти решение задачи Коши для уравнения (2) с начальными данными из области G.
Возьмем п области G некоторую точку (рис 8) Наклон поля в этой точке равен Проведем через точку -прямую с угловим коэффициентом
На этой прямой возьмем любую точку , принадлежащую области G, и через нее прощую области G, и через нее проведем прямую с угловым коэффициентом, равным наклону поля в этой точке, т. е. На последней прямой возьмем любую точку принадлежащую области G, и проведем через нее прямую с угловым коэффициентом и т. д. Такое же построение можно сделать и влево от точки . Построенная ломаная линия называется ломаной Эйлера.
Ясно, что можно построить бесчисленное множество ломаных Эйлера, проходящих через точку — Каждая из этих ломаных с достаточно короткими звеньями дает некоторое представление об интегральной кривой, проходящей через точку если эта интегральная кривая существует. Естественно ожидать, что .мы можем построить последовательность ломаных Эйлера, имеющую своим пределом (когда длины всех звеньев ломаной стремятся к пулю, а их число стремится к бесконечности) интегральную кривую, проходящую через точку Л
Можно доказать*, что при сделанном предположении относительно f(x, у) это действительно имеет место, так что для существования непрерывно дифференцируемого решения задачи Коши для уравнения (2) достаточно предположить, что его правая часть непрерывна в окрестности начальных данных (теорема Пеано).
Заметим, однако, что нс исключена возможность существования нескольких последовательностей ломаных Эйлера, проходящих через точку , каждая из которых стремится к своей интегральной кривой, так что в общем случае, нет оснований ожидать, что мы получим единственную интегральную кривую, проходящую через точку . Более того, как показал М. Л. Лаврентьев**, единственность решения может нарушаться даже во всех точках непрерывности правой части уравнения (2).
Таким образом, теорема Пеано есть только теорема существования решения задачи Коши. Единственности решения она не гарантирует.
Достаточные условия существования и единственности решения задачи Коши
Поставим вопрос: каким условиям достаточно подчинить правую часть уравнения (2) в окрестности начальных данных чтобы через точку проходила одна и только одна интегральная кривая этого уравнения» В общем виде этот вопрос мы рассматриваем в гл. V, где пр* некоторых предположениях относительно правой части уравнения (2) мы доказываем существование и единственность решения задачи Коши и показываем, что свойства решения задачи Коши вполне определяются свойствами правой части уравнения (2) и начальными данным и. Сейчас мы приведем без дока-загельства основную теорему существования и единственности (теорему Пикара) для уравнения (2) в упрощенной формулировке.
Теорема. Пусть дано уравнение (2),
и поставлено начальное условие (38),
Предположим, что функция определена в некоторой замкнутой ограниченной области (рис. 9)
с точкой внутри (а и b — заданные положительные числа) и удовлетворяет в ней следующим двум условиям.
У 1. Функция непрерывна и следовательно, ограничена, т. е.
где М—постоянное положительное число, а(х, у) — любая точка области R;
II. Функция f(x, у) имеет ограничейную частную производную по аргументу у, т. е.:
где К — постоянное положительное число, а (х, у)—любая точка области R.
При этих предположениях уравнение (2) имеет единственное решение (36),
удовлетворяющее начальному условию (38). Это решение определено и непрерывно дифференцируемо в некоторой окрестности начального значения х0 независимой переменной х, а именно оно заведомо определено в интервале
где h есть наименьшее из чисел
Из этой теоремы, в частности, следует, что если правая часть уравнения (2) есть полином относительно х и у или любая другая функция, определенная и непрерывная относительно х и у вместе с частной производной по у при всех значениях х и у, то через любую точку проходит одна и только одна интегральная кривая, ибо во всяком прямоугольнике R с центром в точке (х0, уо) оба условия теоремы Пикара будут очевидно выполнены. В этом случае вся плоскость (х, у) будет заполнена не пересекающимися и не касающимися друг друга гладкими интегральными кривыми.
Примеры с решением
Пример 1.
Пусть дано уравнение
и поставлено начальное условие:
Так как правая часть уравнения (45) есть полином относительно х и у, то решение с любыми начальными условиями, в том числе и с начальным условием (46), существует и единственно.
Оценим область определения решения с начальным условием (46).
С этой целью построим прямоугольник R с центром в точке (0, 0),
причем в качестве а и b можно взять любые положительные числа. Будем иметь:
Отсюда видно, что h зависит от выбора чисел а к &*. В частности, при а = b — 1, получим:
Поэтому уравнение (45) имеет единственное решение, заведомо определенное в интервале и удовлетворяющее начальному условию (46). это решение непрерывно дифференцируемо.
С геометрической точки зрения полученный результат означает, что уравнение (45) имеет только одну интегральную кривую, проходящую через начало координат, причем эта интегральная кривая гладкая.
Этот результат приобретает особое значение, если принять во внимание, что уравнение (45) не интегрируется пи в элементарных функциях, пи в квадратурах от элементарных функций, в чем мы убедимся в п. 51. Установленный факт существования и единственноеги решения дает нам основание пытаться искать его другими методами и в том числе находить это решение приближенно.
Пример 2.
Найти решение уравнения
удовлетворяющее начальному условию:
Так как правая часть уравнения (50) вместе с ее частной производной по непрерывна при всех х и у, то через каждую точку плоскости (х, у) проходит единственная интегральная кривая. Это же будет иметь место и в начале координат. Но легко заметить, что у = 0 (ось Ох) есть решение уравнения (50) и это решение проходит через начало координат, так чго оно и будет искомым решением. В силу только что установленной единственности решения уравнение (50) не имеет других решений, проходящих через начало координат.
* Наибольшим значением h будет
Вообще, если в уравнении (2) функция f(x, у) удовлетворяет обоим условиям теоремы Пикара в некоторой окрестности заданной точки (х0, у0) и такова, что , то единственным решением этого уравнения, проходящим через точку , будет прямая
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
📹 Видео
Решить задачу КошиСкачать
Нефёдов Н. Н. - Дифференциальные уравнения - Задача КошиСкачать
Уравнения Фредгольма - 1Скачать
3. Условия существования и единственности решения задачи КошиСкачать
Задача Коши для ЛНДУ II п. (e^x)Скачать
ДУ Задача КошиСкачать
Интегральные формулы КошиСкачать