Градиентный метод решения системы нелинейных уравнений

5.2. Метод градиента (метод скорейшего спуска)

Пусть имеется система нелинейных уравнений:

Градиентный метод решения системы нелинейных уравнений(5.13)

Систему (5.13) удобнее записать в матричном виде:

Градиентный метод решения системы нелинейных уравнений(5.14)

Где Градиентный метод решения системы нелинейных уравнений— вектор – функция; Градиентный метод решения системы нелинейных уравнений— вектор – аргумент.

Решение системы (5.14), как и для системы линейных уравнений (см. п. 3.8), будем искать в виде

Градиентный метод решения системы нелинейных уравнений(5.15)

Здесь Градиентный метод решения системы нелинейных уравненийи Градиентный метод решения системы нелинейных уравнений— векторы неизвестных на P и P+1 шагах итераций; вектор невязок на P-ом шаге – F(P) = F(X(P)); WP – транспонированная матрица Якоби на P – ом шаге;

Градиентный метод решения системы нелинейных уравнений;

Градиентный метод решения системы нелинейных уравнений.

Пример 5.2. Методом градиента вычислим приближенно корни системы

Градиентный метод решения системы нелинейных уравненийГрадиентный метод решения системы нелинейных уравнений

Расположенные в окрестности начала координат.

Градиентный метод решения системы нелинейных уравнений

Выберем начальное приближение:

Градиентный метод решения системы нелинейных уравнений

По вышеприведенным формулам найдем первое приближение:

Градиентный метод решения системы нелинейных уравнений

Аналогичным образом находим следующее приближение:

Градиентный метод решения системы нелинейных уравнений

Градиентный метод решения системы нелинейных уравнений

Градиентный метод решения системы нелинейных уравнений

Ограничимся двумя итерациями (шагами), и оценим невязку:

Градиентный метод решения системы нелинейных уравнений

· Как видно из примера, решение достаточно быстро сходится, невязка быстро убывает.

· При решении системы нелинейных уравнений методом градиента матрицу Якоби необходимо пересчитывать на каждом шаге (итерации).

Вопросы для самопроверки

· Как найти начальное приближение: а) для метода Ньютона; б) для метода градиента?

· В методе скорейшего спуска вычисляется Якобиан (матрица Якоби). Чем отличается Якобиан, вычисленный для СЛАУ, от Якобиана, вычисленного для нелинейной системы уравнений?

· Каков критерий остановки итерационного процесса при решении системы нелинейных уравнений: а) методом Ньютона; б) методом скорейшего спуска?

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Метод градиента (метод скорейшего спуска) для случая системы нелинейных уравнений

Автор работы: Пользователь скрыл имя, 30 Ноября 2013 в 13:35, курсовая работа

Краткое описание

В настоящее время не существует методов, которые в одинаковой мере были бы хороши для всех систем ЛАУ. Почти все методы являются ориентированными и учитывают тем или иным образом специальные свойства матриц систем ЛАУ.
В курсовом проекте я рассматриваю метод скорейшего спуска. Этот метод не входит в число методов, которые широко используются и часто встречаются в литературе. Он реже используется в практике вычислений, но тем не менее содержит глубокие идеи и входит в основы теории вычислительной алгебры.

Содержание

Введение………………………………………………………. 2
1. Метод градиента (метод скорейшего спуска) для случая системы нелинейных уравнений……………………….……….3
2. Метод скорейшего спуска для случая системы линейных уравнений…………………………………………………………..11
3. Свойства приближений метода скорейшего спуска……17
Заключение……….………….…………………………………25
Список использованной литературы…………

Прикрепленные файлы: 1 файл

Видео:Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

курсач.doc

1. Метод градиента (метод скорейшего спуска) для случая системы нелинейных уравнений……………………….……….3

2. Метод скорейшего спуска для случая системы линейных уравнений……………………………… …………………………..11

3. Свойства приближений метода скорейшего спуска……17

Список использованной литературы…………….………….26

Задачи численного решения систем линейных алгебраических уравнений (ЛАУ) и систем нелинейных численных уравнений многочисленны и весьма разнообразны. Это в первую очередь объясняется многообразием матриц систем ЛАУ и просто матриц для которых необходимо проводить вычисления.

В настоящее время не существует методов, которые в одинаковой мере были бы хороши для всех систем ЛАУ. Почти все методы являются ориентированными и учитывают тем или иным образом специальные свойства матриц систем ЛАУ.

В курсовом проекте я рассматриваю метод скорейшего спуска. Этот метод не входит в число методов, которые широко используются и часто встречаются в литературе. Он реже используется в практике вычислений, но тем не менее содержит глубокие идеи и входит в основы теории вычислительной алгебры.

Метод градиента (метод скорейшего спуска) для случая системы нелинейных уравнений.

Пусть имеется система нелинейных уравнений:

Систему (1) удобнее записать в матричном виде:

где — вектор – функция; — вектор – аргумент.

Предположим, что функции действительны и непрерывно дифференцируемы в их общей области определения. Рассмотрим функцию:

Очевидно, что каждое решение системы (1) обращает в нуль функцию U(x); наоборот, числа x1, x2, . xn, для которых функция U(x) равна нулю, являются корнями системы (1).

Будем предполагать, что система (1) имеет лишь изолированное решение, которое представляет собой точку строгого минимума функции U(x). Таким образом, задача сводится к нахождению минимума функции U(x) в n-мерном пространстве

Пусть x – вектор-корень системы (1) и x (0) – его нулевое приближение. Через точку x (0) проведем поверхность уровня функции U(x). Если точка x (0) достаточна близка к корню х, то при наших предположениях поверхность уровня

будет похожа на эллипсоид.

Из точки х (0) двигаемся по нормали к поверхности U(x)=U(x (0) ) до тех пор, пока эта нормаль не коснется в некоторой точке х (1) какой-то другой поверхности уровня.

Видео:После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме Градиентный метод решения системы нелинейных уравнений, возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

Градиентный метод решения системы нелинейных уравнений(1)

Обозначим через Градиентный метод решения системы нелинейных уравненийвектор неизвестных и определим вектор-функцию Градиентный метод решения системы нелинейных уравненийТогда система (1) записывается в виде уравнения:

Градиентный метод решения системы нелинейных уравнений(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Градиентный метод решения системы нелинейных уравнений

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

Градиентный метод решения системы нелинейных уравнений(3)

Определим матрицу Якоби:

Градиентный метод решения системы нелинейных уравнений(4)

Запишем(3) в виде:

Градиентный метод решения системы нелинейных уравнений(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

Градиентный метод решения системы нелинейных уравнений(6)

где Градиентный метод решения системы нелинейных уравнений— итерационные параметры, a Градиентный метод решения системы нелинейных уравнений— квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Градиентный метод решения системы нелинейных уравнений

Система линейных уравнений (5) для нахождения нового приближения Градиентный метод решения системы нелинейных уравненийможет решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

Градиентный метод решения системы нелинейных уравнений(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

Градиентный метод решения системы нелинейных уравнений(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

🎬 Видео

4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

Алгоритмы С#. Метод Ньютона для решения систем уравнений

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

СИСТЕМА УРАВНЕНИЙ нелинейных 9 класс алгебраСкачать

СИСТЕМА УРАВНЕНИЙ нелинейных 9 класс алгебра

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Вычислительная математика 4 Решение систем нелинейных уравненийСкачать

Вычислительная математика 4 Решение систем нелинейных уравнений

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравненийСкачать

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравнений

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.
Поделиться или сохранить к себе: