Горизонтальной асимптотой функции f ( x ) называется прямая параллельная оси x к которой неограниченно приближается функция f ( x ) при стремлении к бесконечности. Уравнение горизонтальной асимптоты записывается в виде
y = y 0 , где y 0 — некоторая константа (конечное число)
Для того, чтобы найти горизонтальную асимптоту функции f ( x ) , очевидно, необходимо найти y 0 . Получить значение y 0 можно вычислив пределы
Если значение хотя бы одного предела равно конечному числу y 0 , тогда
y = y 0 — горизонтальная асимптота функции f ( x ) .
Для вычисления горизонтальных асимптот своей функции Вы можете воспользоваться нашим бесплатным онлайн калькулятором, построенным на основе системы Wolfram Alpha.
Видео:Математический анализ, 15 урок, АссимптотыСкачать
Асимптоты
п.1. Понятие асимптоты
Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:
Вертикальная асимптота x=3 | Горизонтальная асимптота y=1 |
Наклонная асимптота y=x |
п.2. Вертикальная асимптота
Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).
Например:
Исследуем непрерывность функции (y=frac)
ОДЗ: (xne left)
(leftnotin D) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем (x_0=-3). Найдем односторонние пределы: begin lim_frac=frac=frac=+infty\ lim_frac=frac=frac=-infty end Односторонние пределы не равны и бесконечны.
Точка (x_0=-3) — точка разрыва 2-го рода.
Исследуем (x_1=1). Найдем односторонние пределы: begin lim_frac=frac=frac=-infty\ lim_frac=frac=frac=+infty end Односторонние пределы не равны и бесконечны.
Точка (x_1=1) — точка разрыва 2-го рода.
Вывод: у функции (y=frac) две точки разрыва 2-го рода (left), соответственно – две вертикальные асимптоты с уравнениями (x=-3) и (x=1).
п.3. Горизонтальная асимптота
Число горизонтальных асимптот не может быть больше двух.
Например:
Исследуем наличие горизонтальных асимптот у функции (y=frac)
Ищем предел функции на минус бесконечности: begin lim_frac=frac=+0 end На минус бесконечности функция имеет конечный предел (b=0) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: begin lim_frac=frac=+0 end На плюс бесконечности функция имеет тот же конечный предел (b=0) и также стремится к нему сверху.
Вывод: у функции (y=frac) одна горизонтальная асимптота (y=0). На плюс и минус бесконечности функция стремится к асимптоте сверху.
Итоговый график асимптотического поведения функции (y=frac):
п.4. Наклонная асимптота
Число наклонных асимптот не может быть больше двух.
Чтобы построить график асимптотического поведения, заметим, что у функции (y=frac), очевидно, есть вертикальная асимптота x=1. При этом: begin lim_frac=-infty, lim_frac=+infty end
График асимптотического поведения функции (y=frac):
п.5. Алгоритм исследования асимптотического поведения функции
На входе: функция (y=f(x))
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.
п.6. Примеры
Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) ( y=frac )
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin lim_frac=frac=frac=-infty\ lim_frac=frac=frac=+infty end Точка (x=-1) — точка разрыва 2-го рода
Односторонние пределы в точке (x=1) begin lim_frac=frac=frac=-infty\ lim_frac=frac=frac=+infty end Точка (x=1) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты (x=pm 1)
График асимптотического поведения функции (y=frac)
2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_e^<frac>=e^0=1\ b_2=lim_e^<frac>=e^0=1\ b=b_1=b_2=1 end Функция имеет одну горизонтальную асимптоту (y=1). Функция стремится к этой асимптоте на минус и плюс бесконечности.
График асимптотического поведения функции (y=e^<frac>)
в) ( y=frac )
Заметим, что ( frac=frac=frac=frac ) $$ y=fracLeftrightarrow begin y=frac\ xne -1 end $$ График исходной функции совпадает с графиком функции (y=frac), из которого необходимо выколоть точку c абсциссой (x=-1).
3) Наклонные асимптоты
Ищем угловые коэффициенты: begin k_1=lim_frac=left[fracright]=lim_frac<x^2left(1+fracright)>=frac=1\ k_2=lim_frac=left[fracright]=lim_frac<x^2left(1+fracright)>=frac=1\ k=k_1=k_2=1 end У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin b=lim_(y-kx)= lim_left(frac-2right)= lim_frac= lim_frac=left[fracright]=\ =lim_frac=frac=1 end Функция имеет одну наклонную асимптоту (y=x+1).
График асимптотического поведения функции (y=frac)
2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_xe^<frac>=-inftycdot e^0=-infty\ b_2=lim_xe^<frac>=+inftycdot e^0=+infty end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.
График асимптотического поведения функции (y=xe^<frac>)
Видео:Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать
Асимптоты графика функции
Вы будете перенаправлены на Автор24
Достаточно часто на практике приходится иметь дело с функциями, которые определены не на всей числовой прямой, либо принимают не любые значения из множества действительных чисел.
В таких случаях при построении графиков функций получаем, что график функции не является непрерывной линией, а имеет некоторые разрывы. В результате чего становится целесообразным ввести понятие «асимптота».
Асимптота — это такая прямая, к которой график заданной функции приближается сколько угодно близко, но не пересекает ее.
Среди асимптот выделяют следующие виды:
- вертикальная асимптота (параллельна оси ОY);
- горизонтальная асимптота (параллельна оси ОХ);
- наклонная асимптота (расположена под углом к осям координат).
Отметим, что асимптоты на графике функции изображаются пунктирной линией.
Вертикальная асимптота — это прямая, определяемая уравнением $x=a$, для которой выполняются условия $mathoplimits_ f(x)=infty $ или $mathoplimits_ f(x)=infty $.
Вертикальная асимптота может быть только в точках разрыва функции $y=f(x)$, т.е. в тех точках, где данная функция неопределенна.
Найти вертикальную асимптоту графика данной функции: $y=frac $.
Следовательно, прямая $x=2$ является вертикальной асимптотой (см. рис.).
Горизонтальная асимптота — это прямая, определяемая уравнением $y=b$, для которой выполняются условия $mathoplimits_ f(x)=b$.
Готовые работы на аналогичную тему
Найти горизонтальную асимптоту графика данной функции: $y=5^ $.
Следовательно, прямая $y=0$ является горизонтальной асимптотой (см. рис.).
График функции может иметь только правую либо только левую горизонтальную асимптоту.
Наклонная асимптота — это прямая, определяемая уравнением $y=kx+b$, для которой выполняется условие $mathoplimits_ [f(x)-kx+b]=0$.
Условия существования наклонной асимптоты определяются следующей теоремой.
Если функция $y=f(x)$ имеет конечные пределы $mathoplimits_ frac =k;mathoplimits_ [f(x)-kx]=b$, то данная функция имеет наклонную асимптоту, заданную уравнением $y=kx+b$ при $xto infty $.
Частным случаем наклонной асимптоты при $k=0$ является горизонтальная асимптота.
Наклонная асимптота может быть левой (график приближается справа), правой (график приближается слева) или двусторонней (график приближается с обоих сторон).
Найти наклонную асимптоту графика данной функции: $y=frac <x^> $.
Следовательно, прямая $y=x+2$ является наклонной асимптотой (см. рис.). В данном случае имеем двустороннюю наклонную асимптоту.
Найти наклонную асимптоту графика данной функции: $y=frac <x^> $.
Следовательно, график данной функции не имеет наклонной асимптоты.
График функции может иметь одновременно несколько асимптот, например, вертикальную и наклонную.
Найти асимптоты графика данной функции: $y=frac <3x^> $.
Область определения функции: $D_ = $.
Следовательно, прямая $x=1$ является вертикальной асимптотой (см. рис.).
Следовательно, прямая $y=3x+3$ является наклонной асимптотой (см. рис.). В данном случае имеем двустороннюю наклонную асимптоту.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 17.02.2022
📹 Видео
Асимптоты графика функции. Практика. Пример 1.Скачать
Математика без Ху!ни. Уравнение касательной.Скачать
Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.Скачать
Асимптоты функции. Горизонтальная асимптота. 10 класс.Скачать
Исследование функции. Часть 4. Асимптоты графика функцииСкачать
Асимптоты функции. Наклонная асимптота. 10 класс.Скачать
Асимптоты функции. 10 класс.Скачать
Часть 7. Полное исследование функции и построение графикаСкачать
10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Пределы №6 Нахождение асимптот графиков функцийСкачать
Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать
Математический анализ, 16 урок, Исследование функции и построение графикаСкачать
Асимптоты функции. Практическая часть. 10 класс.Скачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Общая схема исследования функции и построение ее графикаСкачать
Новая задача №9 на гиперболу из ЕГЭ 2022 по математикеСкачать