Тема 6. Системы линейных алгебраических уравнений
Основные понятия СЛАУ
Системой состоящей из m линейных уравнений с n неизвестными называется система вида
(1)
где , — числа, — неизвестные, n – число неизвестных, m – число уравнений.
Решением линейной системы (1) называется упорядоченная совокупность чисел которые при подстановке вместо неизвестных обращают каждое уравнение системы в верное равенство.
Линейная система называется неоднородной, если среди свободных членов имеются отличные от нуля. Если все свободные члены равны нулю, то линейная система называется однородной. Однородная система имеет вид
(2)
Система, имеющая хотя бы одно решение, называется совместной, а система не имеющая решений, — несовместной. Отметим, что однородная система всегда совместна, так как она имеет нулевое решение.
Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если имеет более одного решения.
Две системы называются эквивалентными или равносильными, если любое решение одной из них является так же решением другой и обратно, т.е. если имеют одно и то же множество решений. Любые две несовместные системы считаются эквивалентными.
Элементарными преобразованиями системы называются следующие преобразования:
1) умножение уравнения системы на число, отличное от нуля;
2) прибавление к одному уравнению системы другого ее уравнения, умноженного на любое число;
3) перестановка местами двух уравнений системы.
Определителем системы называется определитель матрицы А из коэффициентов уравнений этой системы
Матрица полученная из основной присоединением столбца из свободных членов называется расширенной матрицей системы.
Решение СЛАУ по формулам Крамера
Пусть дана система n линейных уравнений с n неизвестными.
Обозначим через D определитель системы, а через Dk определитель, полученный заменой в определителе D столбца из коэффициентов при неизвестной хk столбцом свободных членов системы, т.е.
где k – одно из чисел 1, 2, …, n.
Теорема.
1) Если система (2.3) имеет единственное решение, определяемое по формулам: .
2) Если = =0, система имеет бесконечно много решений.
3) Если =0, а хотя бы один из система не имеет решений.
Пример. Решить систему линейных уравнений по формулам Крамера:
Решение:
Найдем определитель матрицы коэффициентов системы
Так как Δ # 0, то заданная система уравнений имеет единственное решение. Для этого вычислим определители Δj, получающиеся из определителя Δ путем замены в нем столбца, состоящего из коэффициентов при хj, столбцом свободных членов.
Ответ:
Примеры:
1. Рассмотрим систему , решенную в предыдущем разделе методом Гаусса, и применим к ней правило Крамера. Найдем все нужные определители:
следовательно, система имеет единственное решение.
Отсюда
2. . Здесь поскольку имеет два одинаковых столбца.
Следовательно, система не имеет единственного решения. Найдем и
поэтому система имеет бесконечно много решений.
3. . Для этой системы но
- Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами
- Методы решения систем линейных алгебраических уравнений (СЛАУ)
- Метод Крамера
- Матричный способ решения СЛАУ
- Метод Гаусса
- Ранг матрицы. Теорема Кронекера-Капелли
- Следствия из теоремы Кронекера — Капелли
- Главный определитель системы уравнений состоит из коэффициентов перед формулами
- 📸 Видео
Видео:Решение системы трех уравнений по формулам КрамераСкачать
Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами
Содержание:
Видео:Решение системы уравнений методом Крамера 2x2Скачать
Методы решения систем линейных алгебраических уравнений (СЛАУ)
Метод Крамера
Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение
Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы
Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на для этого умножим все элементы первого столбца на эту неизвестную:
Второй столбец умножим на третий столбец — на -ый столбец — на и все эти произведения прибавим к первому столбцу, при этом произведение не изменится:
Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е.
Определение: Определитель называется первым вспомогательным определителем СЛАУ.
Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ:
31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.
Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Проанализируем полученные формулы:
- если главный определитель системы отличен от нуля (), то система имеет единственное решение;
- если главный определитель системы равен нулю (), а хотя бы один из вспомогательных определителей отличен от нуля ( или , или, . или ), то система не имеет решений (деление на нуль запрещено);
- если все определители системы равны нулю (), то система имеет бесчисленное множество решений.
Пример:
Решить СЛАУ методом Крамера
Решение:
Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом
Найдем главный определитель СЛАУ (раскрываем по первой строке)
Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя
Воспользуемся формулами Крамера
Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.
Выполним проверку Отсюда видно, что СЛАУ решена верно.
Матричный способ решения СЛАУ
Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных матpицы-столбцы неизвестных и свободных коэффициентов
Тогда СЛАУ можно записать в матричном виде Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу к матрице А, получим в силу того, что произведение найдем Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.
Пример:
Решить СЛАУ матричным способом
Решение:
Введем в рассмотрение следующие матрицы
Найдем матрицу (см. Лекцию № 2): найдем детерминант матрицы А.
Пример:
Решение:
Найдем алгебраические дополнения всех элементов Запишем обратную матрицу (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:
Отсюда находим, что х = 1; y = l; z = l.
Метод Гаусса
Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид:
Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.
Обменяем в расширенной матрице первую и вторую строки местами, получим Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Разделим все элементы второй строки на (-5), получим эквивалентную матрицу
Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Разделим все элементы третьей строки на (-3), получим Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):
Из первого уравнения находим, что х = 1.
Вывод: Из вышеизложенного материала следует, что вне зависимости от
способа решения СЛАУ всегда должен получаться один и тот же ответ.
Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.
Ранг матрицы. Теорема Кронекера-Капелли
Определение: Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы.
Если то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.
При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.
Пример:
Найти ранг матрицы
Решение:
Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство для определителей). Следовательно, ранг матрицы А равен 3.
Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.
Видео:Решение системы уравнений методом Крамера.Скачать
Следствия из теоремы Кронекера — Капелли
Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).
Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).
В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Скалярное произведение и его свойства
- Векторное и смешанное произведения векторов
- Преобразования декартовой системы координат
- Бесконечно малые и бесконечно большие функции
- Критерий совместности Кронекера-Капелли
- Формулы Крамера
- Матричный метод
- Экстремум функции
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Матричный метод решения систем уравненийСкачать
Главный определитель системы уравнений состоит из коэффициентов перед формулами
ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I
§29 Главный и вспомогательный определители системы двух линейных ypaвнений с двумя неизвестными.
Главным определителем системы уравнений
(1)
составленный из коэффициентов при неизвестных х и у. Этот определитель мы будем обозначать греческой буквой Δ (дельта). Очевидно, что
Первым вспомогательным определителем системы уравнений (1) называется определитель
Он получается из главного определителя этой системы уравнений путем замены первого столбца на столбец свободных членов. Этот определитель мы будем обозначать Δx. Индекс (то есть значок) х при Δ указывает, что в главном определителе Δ первый столбец, составленный из коэффициентов при х в системе уравнений (1), заменен на столбец свободных членов . Очевидно, что
Вторым вспомогательным определителем системы уравнений (1) называется определитель
‘
который получается из главного определителя этой системы путем замены второго столбца на столбец свободных членов. Этот определитель мы будем обозначать Δy. Очевидно, что
Пример. Для системы уравнений
Вопрос о том, какую пользу приносят введенные нами определители Δ , Δx и Δy при решении системы уравнений (1), мы выясним в следующих параграфах.
Найти главный и вспомогательные определители для следующих систем уравнений:
📸 Видео
10. Метод Крамера решения систем линейных уравнений.Скачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Математика без Ху!ни. Метод Гаусса.Скачать
Решение системы уравнений методом ГауссаСкачать
Решение системы уравнений с двумя неизвестными с помощью формул Крамера | Высшая математикаСкачать
Линейная алгебра, 8 урок, Метод КрамераСкачать
Формулы КРАМЕРАСкачать
МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать
Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать
Решение систем уравнений. Метод Крамера для системы линейных уравнений с двумя неизвестными.Скачать
Формулы Крамера для системы двух линейных уравненийСкачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Решить систему линейных уравнений по формулам Крамера и матричным методом.Скачать