Прямая линия пересекающая перпендикулярно себе гиперболу и перемещаемая параллельно себе вдоль этой линии образует поверхность именуемую — гиперболический цилиндр.
Уравнение поверхности выглядит так:
В плоскости XY направляющими являются гиперболы. Образующие располагаются параллельно оси OZ.
Данная поверхность является цилиндрической, а также поверхностью второго порядка (квадратичной).
Уравнение (1) может быть записано в параметрической форме:
- 6.2. Цилиндрические поверхности
- Параболические цилиндры
- Гиперболические цилиндры
- Поверхности второго порядка: их виды, уравнения, примеры
- Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
- Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
- Эллипсоид
- Мнимый эллипсоид
- Мнимый конус
- Однополостный гиперболоид
- Двуполостный гиперболоид
- Конус
- Эллиптический параболоид
- Гиперболический параболоид
- Эллиптический цилиндр
- Мнимый эллиптический цилиндр
- Мнимые пересекающиеся плоскости
- Гиперболический цилиндр
- Пересекающиеся плоскости
- Параболический цилиндр
- Параллельные плоскости
- Мнимые параллельные плоскости
- Совпадающие плоскости
- Решение примеров на определение вида поверхности второго порядка
- Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
- 🎥 Видео
Видео:Поверхности второго порядкаСкачать
6.2. Цилиндрические поверхности
Или цилиндры. Под цилиндром также понимают геометрическое тело.
И это не совсем то, что обычно подразумевает обыватель – класс цилиндрических поверхностей не ограничивается чёрным цилиндром на голове:
Задача 167
Построить поверхность, заданную уравнением
…что за дела?! Не опечатка ли здесь? Вроде как дано уравнение эллипса…
Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем
и построим в плоскости
эллипс
. Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз до бесконечности.
Данная поверхность называется эллиптическим цилиндром. Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют).
Ось является осью симметрии поверхности (но не её частью!).
Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .
Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство
определяет множество точек вне цилиндра.
В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность:
Задача 168
Построить поверхность, заданную уравнением
Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».
Сначала удобно построить окружность радиуса в плоскости
, а затем ещё пару окружностей сверху и снизу.
Полученные окружности (направляющие цилиндра) аккуратно соединяем 4 параллельными прямыми (образующими цилиндра):
Не забываем использовать пунктир для невидимых нам линий!
Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству
, а неравенство
задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.
Часто эту поверхность некорректно называют круговым цилиндром. Круглым! Круговой цилиндр, строго говоря – есть тело, по той причине, что его направляющей является круг. И тело, кстати, определяется неравенством .
Задача 169
Построить поверхность и найти её проекцию на плоскость
Перепишем уравнение в виде , из которого следует, что «икс» принимает любые значения. Зафиксируем
и в плоскости
изобразим окружность
– с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает цилиндр с осью симметрии
. Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:
На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.
Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.
Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку:
Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость
. А кажется он бесконечной полосой, заключенным между прямыми
, включая сами прямые. Данная проекция – это в точности область определения функций
(верхний «жёлоб» цилиндра),
(нижний «жёлоб»).
Давайте заодно проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость
является аналогичная бесконечная полоса – часть плоскости
, ограниченная прямыми
(
– любое), включая сами прямые.
А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси
, то он спроецируется в окружность (не круг!) единичного радиуса
, с которой мы начинали построение.
Задача 170
Построить поверхность и найти её проекции на координатные плоскости
Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат – выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце книги.
Цилиндрические поверхности могут быть смещены относительно координатных осей, например:
– данное уравнение (по знакомым мотивам линий 2-го порядка) задаёт цилиндр единичного радиуса с линией симметрии, проходящей через точку
параллельно оси
.
Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.
Параболические цилиндры
Как следует из названия, направляющей такого цилиндра является парабола.
Задача 171
Построить поверхность и найти её проекции на координатные плоскости.
Не мог удержаться от этого примера =)
Решение: идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем
и построим обычную параболу
на плоскости
, предварительно отметив тривиальные опорные точки
. Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости)
и аккуратно соединяем их параллельными прямыми (образующими цилиндра):
Напоминаю полезный технический приём: если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.
Теперь вторая часть задания, отыскание проекций:
1) Проекцией цилиндра на плоскость является парабола
.
2) Проекция цилиндра на плоскость представляет собой полуплоскость
, включая ось
3) И, наконец, проекцией цилиндра на плоскость является вся плоскость
.
Задача 172
Построить параболические цилиндры:
а) , ограничиться фрагментом поверхности в ближнем полупространстве;
б) на промежутке
В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину.
Я и сам особо не заморачиваюсь над красотой линий – если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа 😉
Гиперболические цилиндры
Направляющими таких цилиндров являются гиперболы.
Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, и поэтому я ограничился единственным схематическим чертежом гиперболического цилиндра .
Принцип рассуждения здесь точно такой же – обычная «школьная» гипербола из плоскости
непрерывно «размножается» вверх и вниз до бесконечности.
Видео:Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
Поверхности второго порядка: их виды, уравнения, примеры
Видео:Цилиндрические поверхностиСкачать
Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат
Общее уравнение поверхности второго порядка имеет вид
Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:
Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:
В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.
Видео:Видеоурок по математике "Цилиндр"Скачать
Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому
I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 , λ 2 , λ 3 — корни характеристического уравнения
.
В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.
Эллипсоид
Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.
После решения характеристического уравнения общее уравнение можно переписать в следующем виде:
.
Тогда полуоси эллипсоида будут
,
,
.
Поэтому каноническое уравнение эллипсоида имеет вид
.
Мнимый эллипсоид
Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:
,
,
,
.
Мнимый конус
Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.
После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:
,
,
,
.
Однополостный гиперболоид
Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:
.
,
,
,
то каноническое уравнение однополостного гиперболоида будет иметь вид
.
Двуполостный гиперболоид
Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.
Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:
.
Последняя запись и есть каноническое уравнение двуполостного гиперболоида.
Конус
Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.
Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:
,
известном как каноническое уравнение конуса.
II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический параболоид
Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.
Общее уравнение можно переписать в виде:
.
Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая
,
,
получим каноническое уравнение эллиптического параболоида:
.
Гиперболический параболоид
Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.
Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем знак минус, переписываем уравнение в виде:
.
,
,
получим каноническое уравнение гиперболического параболоида:
.
III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.
Эллиптический цилиндр
Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
,
,
получим каноническое уравнение эллиптического цилиндра:
.
Мнимый эллиптический цилиндр
Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.
Мнимые пересекающиеся плоскости
Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
.
,
,
получим каноническое уравнение мнимых пересекающихся плоскостей:
.
Гиперболический цилиндр
Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
,
,
.
Таким образом, каноническое уравнение гиперболического цилиндра:
.
Пересекающиеся плоскости
Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.
Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:
,
,
.
Таким образом, пересекающихся плоскостей:
.
IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.
Параболический цилиндр
Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:
,
.
Это уравнение параболического цилиндра, в каноническом виде оно записывается так:
.
V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:
,
.
Параллельные плоскости
Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.
,
перепишем его в виде
.
Мнимые параллельные плоскости
Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.
,
перепишем его в виде
.
Совпадающие плоскости
Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:
.
Видео:Гиперболические функции и формула ЭйлераСкачать
Решение примеров на определение вида поверхности второго порядка
Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :
(как вычислить определитель).
I 1 = 1 + 5 + 1 = 7 ,
Следовательно, данная поверхность — однополостный гиперболоид.
.
Составляем и решаем характеристическое уравнение:
;
.
,
,
,
.
Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
Решение. Найдём I 3 :
.
.
Следовательно, общее уравнение определяет эллиптический параболоид.
.
I 1 = 2 + 2 + 3 = 7 .
Решаем характеристическое уравнение:
.
.
,
,
.
Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
,
,
,
I 1 = 5 + 2 + 5 = 12 .
Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.
.
.
Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение
Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением
🎥 Видео
#161. САМАЯ КРАСИВАЯ ФОРМУЛА В МАТЕМАТИКЕ — ФОРМУЛА ЭЙЛЕРА: e^(iπ)+1=0Скачать
§63 Цилиндрические поверхностиСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Поверхности 2-го порядка | Лекция 14 | ЛинАл | СтримСкачать
Видеоурок "Гипербола"Скачать
Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать
Определение гиперболических функций chx и shx.Скачать
Поверхности 2го порядка. КлассификацияСкачать
Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать
Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.Скачать
Построение гиперболического параболоидаСкачать
553. Уравнение цилиндрической поверхности.Скачать
Математический анализ, 15 урок, АссимптотыСкачать
Цилиндрические функции, решение задачСкачать
ВСЁ ПРО ГРАФИКИ ЕГЭ 2024 (Прямая, Парабола, Окружность, Модуль, Гипербола, Корень, Области, Сдвиги)Скачать