Гипербола вывод уравнения и свойства

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Что такое гипербола

Гипербола вывод уравнения и свойства

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

Лекция 31.2. Кривые второго порядка. Гипербола.

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Гипербола вывод уравнения и свойства

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Гипербола вывод уравнения и свойства

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Гипербола вывод уравнения и свойства

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Гипербола вывод уравнения и свойства
  • Выделяем квадраты в знаменателях:
    Гипербола вывод уравнения и свойства
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Гипербола вывод уравнения и свойства
    Гипербола вывод уравнения и свойства

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Гипербола вывод уравнения и свойства
      • Найдем асимптоты гиперболы. Вот так: Гипербола вывод уравнения и свойства
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Гипербола вывод уравнения и свойства

    на черновике выражаем:

    Гипербола вывод уравнения и свойства

    Уравнение распадается на две функции:

    Гипербола вывод уравнения и свойства

    — определяет верхние дуги гиперболы (то, что ищем);

    Гипербола вывод уравнения и свойства

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Гипербола вывод уравнения и свойства

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Гипербола вывод уравнения и свойства

    Видео:Видеоурок "Гипербола"Скачать

    Видеоурок "Гипербола"

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Гипербола вывод уравнения и свойства

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Гипербола вывод уравнения и свойства

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Гипербола. Функция k/x и её графикСкачать

    Гипербола. Функция k/x и её график

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Гипербола вывод уравнения и свойства

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Гипербола вывод уравнения и свойства

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Гипербола вывод уравнения и свойства

    Запишем это уравнение в координатной форме:

    Гипербола вывод уравнения и свойства

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Гипербола вывод уравнения и свойства

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Гипербола вывод уравнения и свойства

    На самом деле для фокуса F2 и директрисы d2 условие

    Гипербола вывод уравнения и свойства

    можно записать в координатной форме так:

    Гипербола вывод уравнения и свойства

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Гипербола вывод уравнения и свойства

    Видео:Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

    Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Гипербола вывод уравнения и свойства

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Гипербола вывод уравнения и свойства

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Гипербола вывод уравнения и свойства

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Видео:Лекция 14, 2021. Вывод уравнения эллипса и гиперболыСкачать

    Лекция 14,  2021. Вывод уравнения эллипса и гиперболы

    Вывод канонического уравнения гиперболы.

    Дата добавления: 2015-08-31 ; просмотров: 15767 ; Нарушение авторских прав

    ГИПЕРБОЛА

    Определение. Гиперболой называется множество точек плоскости, разность расстояний от каждой из которых до двух данных точек плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

    Вывод канонического уравнения гиперболы.

    F1F2=2с (фокусное расстояние), причем по определению 2а 2 –а 2 ), получим: Гипербола вывод уравнения и свойства.

    По условию а 2 –а 2 есть положительная величина, ее принято обозначать b 2 , т.е. b 2 2 –а 2 (3). Тогда

    Гипербола вывод уравнения и свойства(4),

    Это каноническое уравнение гиперболы. Очевидно, что гипербола – линия второго порядка.

    2. Покажем, что всякая точка, координаты которой удовлетворяют уравнению (4), принадлежит гиперболе (по определению).

    Пусть М0(х0; у0) – точка, гиперболы, координаты которой удовлетворяют уравнению (4), т.е. Гипербола вывод уравнения и свойства. Отсюда Гипербола вывод уравнения и свойства. Найдем расстояния r1=F1М0 и r2=F2М0 (их называют левым и правым фокальными радиусами соответственно), применив формулу (3):

    r1= Гипербола вывод уравнения и свойства Гипербола вывод уравнения и свойства Гипербола вывод уравнения и свойства,

    аналогично r2= Гипербола вывод уравнения и свойства Гипербола вывод уравнения и свойства, т.е.

    r1= Гипербола вывод уравнения и свойстваr2= Гипербола вывод уравнения и свойства.

    (Из условия (3): а 0, т.е. точка М0 принадлежит гиперболе по определению.

    Видео:§21 Каноническое уравнение гиперболыСкачать

    §21 Каноническое уравнение гиперболы

    Гипербола и её свойства

    Видео:Гипербола (часть 7). Директрисы гиперболы. Высшая математика.Скачать

    Гипербола (часть 7). Директрисы гиперболы. Высшая математика.

    Гипербола и её форма.

    Гиперболой мы назвали линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
    $$
    frac<x^><a^>-frac<y^><b^>=1.label
    $$

    Из этого уравнения видно, что для всех точек гиперболы (|x| geq a), то есть все точки гиперболы лежат вне вертикальной полосы ширины (2a) (рис. 8.6). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами ((a, 0)) и ((-a, 0)), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа (a) и (b) называются соответственно вещественной и мнимой полуосями гиперболы.

    Гипербола вывод уравнения и свойстваРис. 8.6. Гипербола.

    Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы — центром симметрии.

    Доказательство аналогично доказательству соответствующего утверждения для эллипса.

    Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде (y=kx), поскольку мы уже знаем, что прямая (x=0) не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения
    $$
    frac<x^><a^>-frac<k^x^><b^>=1.
    $$
    Поэтому, если (b^-a^k^ > 0), то
    $$
    x=pm frac<sqrt<b^-a^k^>>.
    $$
    Это позволяет указать координаты точек пересечения ((ab/v, abk/v)) и ((-ab/v, -abk/v)), где обозначено (v=(b^-a^k^)^). В силу симметрии достаточно проследить за движением первой из точек при изменении (k) (рис. 8.7).

    Гипербола вывод уравнения и свойстваРис. 8.7. Пересечение прямой и гиперболы.

    Числитель дроби (ab/v) постоянен, а знаменатель принимает наибольшее значение при (k=0). Следовательно, наименьшую абсциссу имеет вершина ((a, 0)). С ростом (k) знаменатель убывает, и (x) растет, стремясь к бесконечности, когда (k) приближается к числу (b/a). Прямая (y=bx/a) с угловым коэффициентом (b/a) не пересекает гиперболу, и прямые с большими угловыми коэффициентами ее тем более не пересекают. Любая прямая с меньшим положительным угловым коэффициентом пересекает гиперболу.

    Если мы будем поворачивать прямую от горизонтального положения по часовой стрелке, то (k) будет убывать, (k^) расти, и прямая будет пересекать гиперболу во все удаляющихся точках, пока не займет положения с угловым коэффициентом (-b/a).

    К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из приведенных рассуждений вытекает, что гипербола имеет вид, изображенный на рис. 8.7.

    Прямые с уравнениями (y=bx/a) и (y=-bx/a) в канонической системе координат называются асимптотами гиперболы.

    🎬 Видео

    Графики функций №3 ГиперболаСкачать

    Графики функций №3 Гипербола

    Гипербола и ее свойства - bezbotvyСкачать

    Гипербола и ее свойства - bezbotvy

    функция y=k/x и ее график (гипербола) - 8 класс алгебраСкачать

    функция y=k/x и ее график (гипербола) - 8 класс алгебра

    Гипербола и ее свойстваСкачать

    Гипербола и ее свойства

    Математика это не ИсламСкачать

    Математика это не Ислам

    §29 Эксцентриситет гиперболыСкачать

    §29 Эксцентриситет гиперболы

    Овчинников А. В. - Аналитическая геометрия - Эллипс, гипербола, параболаСкачать

    Овчинников А. В. - Аналитическая геометрия - Эллипс, гипербола, парабола

    §24 Каноническое уравнение параболыСкачать

    §24 Каноническое уравнение параболы

    Математический анализ, 15 урок, АссимптотыСкачать

    Математический анализ, 15 урок, Ассимптоты

    ЭллипсСкачать

    Эллипс

    Видеоурок "Парабола"Скачать

    Видеоурок "Парабола"
    Поделиться или сохранить к себе: