Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

График линейной функции, его свойства и формулы

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

О чем эта статья:

Видео:Угловой коэффициент в уравнении прямой. Геометрический смысл углового коэффициента. Геометрия 8 клСкачать

Угловой коэффициент в уравнении прямой. Геометрический смысл углового коэффициента. Геометрия 8 кл

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Видео:Урок 320. Производная функции и ее геометрический смыслСкачать

Урок 320. Производная функции и ее геометрический смысл

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

Видео:Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать

Видеоурок "Уравнение прямой с угловым коэффициентом"

Линейная функция

Линейной называется функция вида у = ах + 6, где а и b — некоторые числа.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Геометрический смысл коэффициентов

Выясним геометрический смысл коэффициентов а и 6 линейной функции у = ах + 6. Для этого воспользуемся инструментом под названием «Ползунок».

1) Нажимаем клавишу (тем самым берем инструмент) «Ползунок» и кликнем на выбранную точку Полотна. В выпавшем меню компьютер предлагает назвать ползунок, а вместе с ним и параметр, который он изображает, буквой а и установить границы изменения параметра от -5 до 5. Соглашаемся или вводим свои границы. На выбранном месте появляется изображение ползунка .в виде отрезка с точкой. Аналогично строим ползунок для параметра Ь. Изменение каждого из параметров достигается перемещением точки на отрезке. На рисунке 21 установлено: а = 1.6, Ь = 5. 2 3

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

  • 2) В строку ввода записываем: f(x) = a*x+b. После ввода на Полотне появляется график функции при установленных значениях параметров. В нашем случае это прямая. Отмечаем точки Aw В построенной прямой с осями координат.
  • 3) Строим начало координат О = (0.0), через начало координат проводим прямую параллельно данной прямой, строим точку Е = (1,0), через неё проводим вертикаль и отмечаем точку С пересечения вертикали с прямой, проходящей через начало координат параллельно данной прямой. Угловой коэффициент прямой есть по определению к = у(С). Вводим это число и делаем надпись: «Угловой коэффициент к = у(С) = к». При этом последнее к берем из «Объектов».

Теперь проводим исследование. Видим, что параметр b есть ордината точки В. Это неудивительно, поскольку /(0) = Ь. При изменении параметра а наблюдаем неизменное равенство а = к. Другими словами, коэффициент а равен угловому коэффициенту данной прямой.

Задания. С помощью живого рисунка 21 продемонстрируйте частные случаи линейной функции f(x) = ах + b: 1) а = 1, b = 0; 2) а = 0, b = 1;

3) анимируйте а (Ь) при фиксированном Ь (а).

Видео:3. Геометрический смысл производной. Уравнение касательной и нормали.Скачать

3. Геометрический смысл производной. Уравнение касательной и нормали.

Физический смысл коэффициентов линейного уравнения

Выясним физический смысл коэффициентов в уравнении прямой у = кх + Ь.

На живом рисунке 22 точка С равномерно движется от начала координат вверх по оси ординат со скоростью v. (Например, воздушный шар поднимается с земли с постоянной скоростью.) За время х точка С пройдет путь у = vx. Получили линейную функцию вида у = кх. Следовательно, физический смысл углового коэффициента к состоит в том, что он равен скорости равномерного движения у = vx. Если в начальный момент точка С находится не в начале координат, а отстоит от него на расстоянии Ьу то зависимость пройденного расстояния от времени выразится равенством у = vx + Ь.

Смоделируем движение, задаваемое линейной функцией у = их.

Построение (рис. 22).

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

  • 1) Строим точки О = (0,0), Е = (1,0), единичную окружность, отмечаем на ней точку А и проводим прямую О А.
  • 2) Проводим вертикаль через точку Е и отмечаем точку D пересечения вертикали с прямой О А.
  • 3) На положительном луче оси абсцисс строим отрезок OF и отмечаем на нём точку X. Проводим через неё вертикаль и отмечаем точку В пересечения вертикали с прямой О А. Через В проводим горизонталь и отмечаем точку С пересечения горизонтали с осью ординат. Делаем эту точку большой, в виде шара.

При анимации точки X точка С демонстрирует равномерное движение по вертикали (шар поднимается вверх). Заметим, что для достижения равномерного движения точки X её нужно взять именно на отрезке оси абсцисс. Чем меньше скорость, тем больше времени требуется для прохождения данного расстояния. Следовательно, при малой скорости (при малом угле наклона прямой) отрезок AFy по которому перемещается точка X, нужно удлинять, а при большой скорости (при большом угле наклона прямой О А) — укорачивать.

На рисунке 22 видим, что угловой коэффициент к = tga = 7777- Сле-

довательно, к есть отношение пройденного пути к единице измерения времени. Таким образом, к есть скорость равномерного движения. Изменяя положение точки А на окружности, наблюдаем изменение скорости движения шара С.

Задание. Смоделируйте равномерное движение точки оси абсцисс по закону у = vx + Ь.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Построение графика линейной функции на основе геометрического моделирования операций

Создадим в среде GeoGebra виртуальный прибор для вычерчивания графика линейной функции у = кх + 6, используя геометрическое моделирование операций над действительными числами.

Построение <рис. 23).

  • 1) На оси ординат отмечаем коэффициенты к и Ь точками соответственно К(0, к) и В(О, Ь).
  • 2) На оси абсцисс отмечаем точку X(х, 0) и проводим через неё вертикальную прямую, которую будем называть собирательной прямой.
  • 3) На оси ординат строим произведение кх. Для этого строим точку Е = (1,0), точку К соединяем отрезком с точкой Е, а затем через точку X проводим прямую параллельно построенному отрезку. Эта прямая пересечёт ось ординат в точке F(0, кх).
  • 4) Проектируем точку F на собирательную прямую и получаем точку G(x, кх).
  • 5) Отмечаем точку О пересечения осей координат, соединяем отрезком точки О и G, а затем через точку В проводим прямую параллельно отрезку OG. Построенная прямая является искомой. Чтобы в этом убе-

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

литься, отмечаем точку Я пересечения построенной прямой с собирательной прямой и заставляем её оставлять след. При анимации точки X точка Я вычерчивает прямую, совпадающую с построенной прямой. С другой стороны, эта точка имеет координаты Н(х, кх + 6), а значит вычерчивает прямую у = кх + 6.

Заметим, что точку Я можно построить параллельным переносом точки G на вектор О В (см. живой рис. 23-доп).

Напомним, что коэффициент к прямой у = кх + Ь равен тангенсу угла наклона этой прямой к оси абсцисс, и это можно увидеть, исходя из построений. В самом деле, угол наклона построенной прямой т к оси абсцисс равен углу ZGOX, а тангенс этого угла равен по определению отно-

шению второй координаты точки G к первой координате, то есть — = к.

Видео:Видеоурок "Общее уравнение прямой"Скачать

Видеоурок "Общее уравнение прямой"

Глава 1. Уравнение прямой (стр. 1 )

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямойИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Видео:Геометрический смысл производной | КасательнаяСкачать

Геометрический смысл производной | Касательная

Глава 1. Уравнение прямой

Геометрия развивается по многим направлениям. Возникновение компьютеров привело к появлению такой области математики как вычислительная геометрия. При создании современных приложений часто требуется разработка эффективных алгоритмов для определения взаиморасположения различных объектов на плоскости, вычисления расстояний между ними, вычисления площадей фигур и др.

В данной главе излагается материал, частично известный вам из курса математики. Мы рассмотрим методы решения геометрических задач, которые эффективно реализуются с помощью компьютера, что позволит вам по другому взглянуть на вопросы, изучаемые в рамках школьного курса геометрии. Для этого придется воспользоваться аналитическим представлением геометрических объектов.

1. 1. Формы записи уравнения прямой

В задачах часто приходится задавать на плоскости различные геометрические объекты. Простейшими геометрическими фигурами на плоскости являются точка и прямая. Точка задается указанием своих координат, например A(15; –5), B(x1; y1). Прямую можно задавать с помощью уравнения прямой. Существуют различные формы записи уравнения прямой. Выбор какой-то конкретной зависит от исходных данных, задающих прямую на плоскости. (Могут быть заданы координаты двух точек, через которые проводится прямая, или коэффициенты при неизвестных в линейном уравнении).

В декартовых координатах каждая прямая определяется уравнением первой степени. Уравнение вида

называется общим уравнением прямой.

Если в общем уравнении прямой коэффициент при y не равен нулю, то уравнение можно разрешить относительно y:

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Обозначая k = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямойи b = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой,

получаем уравнение вида y = kx + b. Если же B = 0, то уравнение имеет вид

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Уравнение y = kx + b называется уравнением прямой с угловым коэффициентом; k – угловой коэффициент, b – величина отрезка, который отсекает прямая на оси Oy, считая от начала координат (рис. 1).

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Уравнение yy0 = k(xx0) – это уравнение прямой с угловым коэффициентом k, которая проходит через точку с координатами (x0; y0).

Рассмотрим две точки с координатами (x1; y1) и (x2; y2), лежащие на прямой y = kx + b. Их координаты удовлетворяют уравнению прямой:

Вычитая из второго равенства первое, имеем y2 – y1 = k(x2 – x1), или

k = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Пусть точка с координатами (x; y) – произвольная точка на прямой, проходящей через точки с координатами (x1; y1) и (x2; y2) ( рис. 2 ). Тогда, с учетом того факта, что она имеет тот же коэффициент наклона, получаем

k = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямойили Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

является уравнением прямой, которая проходит через точки с координатами (x1; y1) и (x2; y2). Недостатком этой формулы является ее неопределенность при x1 = x2 и (или) y1 = y2. Поэтому ее лучше использовать в виде

Алгоритм для определения значений коэффициентов A, B, C общего уравнения прямой, проходящей через точки (x1; y1) и (x2; y2), будет следующим [1] :

C:= – x1*(y2 – y1)+y1*(x2 – x1)

Рассмотрим пример: x1 = 0, y1 = 0, x2 = 1, y2 = 2. Уравнение прямой, проходящей через точки (x1; y1) и (x2; y2) будет следующим:

C = –x1 * (y2 – y1) + y1 * (x2 – x1) = 0 * 2 + 0 * 1 = 0. ЌСледовательно, уравнение прямой будет иметь вид 2ху = 0.

1. 2. Положение точек относительно прямой

Множество точек прямой, проходящей через две точки с координатами (x1; y1) и (x2; y2), удовлетворяет уравнению

Это значит, что если имеется точка с координатами (x0; y0) и (x0x1) * (y2 – y1) – (y0y1) * (x2 – x1) = 0, то эта точка лежит на прямой. B дальнейшем, вместо выражения (xx1) * (y2 – y1) – (yy1) * (x2 – x1) мы иногда будем использовать для краткости обозначение Ax + By + C или f(x1, y1, x2, y2, x, y).

Прямая Ax + By + C = 0, проходящая через две заданные точки с координатами (x1; y1) и (x2; y2), разбивает плоскость на две полуплоскости. Рассмотрим возможные значения выражения Ax + By + C.

1) Ax + By + C = 0 – определяет геометрическое место точек, лежащих на прямой.

Запишем алгоритм для определения, лежит ли точка с координатами (x3; y3) на прямой, проходящей через точки (x1; y1) и (x2; y2). Переменная P – переменная логического типа, которая имеет значение «истина», если точка лежит на прямой и «ложь» в противном случае.

если (x3 – x1)*(y2 – y1) – (y3 – y1)*(x2 – x1)=0

2) Ax + By + C > 0 – определяет геометрическое место точек, лежащих по одну сторону от прямой.

3) Ax + By + C рис. 3 точки (x3; y3) и (x4; y4) лежат по одну сторону от прямой, точки (x3; y3) и (x5; y5) по разные стороны от прямой, а точка (x6; y6) лежит на прямой.

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Рассмотрим пример: x1 = 1, y1 = 2, x2 = 5, y2 = 6. Уравнение прямой, проходящей через точки (x1; y1) и (x2; y2), будет следующим:

Следовательно, уравнение прямой будет иметь вид 4х – 4у + 4 = 0 или xy + 1 = 0. Подставим координаты точек (3; 4), (1; 1), (2; 0), (0; 2) в уравнение прямой. Получим:

1 * 3 – 1 * 4 + 1 = 0, 1 * 2 – 1 * 0 + 1 > 0,

1 * 1 – 1 * 1 + 1 > 0, 1 * 0 – 1 * 2 + 1 L:=»по одну»

Z1:=(x3 – x1)*(y2 – y1) – (y3 – y1)*(x2 – x1)

Z2:=(x4 – x1)*(y2 – y1) – (y4 – y1)*(x2 – x1)

½ то L:=»по разные» (1. 3)

1.3. Взаимное расположение двух отрезков

Пусть нам необходимо определить взаимное расположение двух отрезков. Отрезки на плоскости заданы координатами своих концевых точек. Предположим, что концевые точки одного из отрезков имеют координаты (x1; y1) и (x2; y2), а концевые точки другого – (x3; y3) и (x4; y4). Пусть общее уравнение первой прямой, проходящей через точки (x1;y1) и (x2;y2), имеет вид A1x + B1y + C1 = 0, а второй прямой, проходящей через точки (x3;y3) и (x4;y4), A2x + B2y + C2 = 0.

Определим расположение точек (x3; y3) и (x4; y4) относительно первой прямой. Если они расположены по одну сторону от прямой, то отрезки не могут пересекаться. Аналогично можно определить положение точек (x1; y1) и (x2; y2) относительно другой прямой.

Таким образом, если значения пары выражений Z1 = A1x3 + B1y3 + C1 и Z2 = A1x4 + B1y4 + C1 имеют разные знаки или Z1*Z2 = 0, а также пары Z3 = A2x1 + B2y1 + C2 и Z4 = A2x2 + B2y2 + C2 имеют разные знаки или Z3*Z4 = 0, то отрезки пересекаются. Если же значения пар выражений Z1 и Z2, или Z3 и Z4, имеют одинаковые знаки, то отрезки не пересекаются.

Различные случаи расположения отрезков показаны на рис. 4 .

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

На этом рисунке отрезки с концами в точках (x1; y1), (x2; y2) и (x4; y4), (x5; y5) пересекаются, отрезки с концами в точках (x1; y1), (x2; y2) и (x3; y3), (x4; y4) не пересекаются, а отрезки с концами в точках (x3; y3), (x4; y4) и (x4; y4) и (x5; y5) имеют общую вершину, что можно считать частным случаем пересечения.

Алгоритм для определения, пересекаются ли два отрезка с концами в точках (x1; y1), (x2; y2) и (x3; y3), (x4; y4) будет следующим:

Z1:=(x3 – x1)*(y2 – y1) – (y3 – y1)*(x2 – x1)

Z2:=(x4 – x1)*(y2 – y1) – (y4 – y1)*(x2 – x1)

Z3:=(x1 – x3)*(y4 – y3) – (y1 – y3)*(x4 – x3)

Z4:=(x2 – x3)*(y4 – y3) – (y2 – y3)*(x4 – x3)

Приведенный фрагмент алгоритма не учитывает крайней ситуации, когда два отрезка лежат на одной прямой. В этом случае (x3x1) * (y2 – y1) – (y3y1) * (x2 – x1) = 0 и (x4x1) * (y2 – y1) – (y4y1) * (x2 – x1) = 0.

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

На рис. 5 отрезки, лежащие на одной прямой не пересекаются, а на рис. 6 – отрезки пересекаются.

Для того, чтобы определить взаимное расположение таких отрезков, поступим следующим образом. Обозначим

Здесь k1 является левой, а k2 – правой точкой проекции первого отрезка (отрезка, заданного координатами (x1; y1), (x2; y2)) на ось Ox. Аналогично k3 является левой, а k4 – правой точкой проекции второго отрезка (отрезка, заданного координатами (x3; y3), (x4; y4)) на ось Ox. Аналогично ищем преокции на ось OY.

Отрезки, лежащие на одной прямой будут пересекаться тогда, когда их проекции на каждую ось пересекаются. (Следует заметить, что если проекции двух произвольных отрезков пересекаются, то это не значит, что и сами отрезки пересекаются, что видно на рис. 7 ).

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Для определения взаимного расположения проекций на ось OX воспользуемся следующим фактом (см. рис. 5 и рис. 6 ): координата левой точки пересечения проекций Lx равна max(k1; k3), т. е. максимальной из координат левых точек проекций. Рассуждая аналогично для правых точек проекций, получим, что координата правой точки Rx пересечения равна min(k2; k4). Для того, чтобы отрезки пересекались, необходимо, чтобы левая координата пересечения проекций была не больше правой координаты пересечения отрезков (такой случай имеет место на рис. 5 , когда Lx = х3, а Rx = х2). Поэтому условием пересечения проекций является выполнение неравенства Lx £ Rx. Аналогично можно вычислить величины и , беря соответствующие проекции на ось Оу.

Следует отметить, что длина пересечения проекций в этом случае равна величине LxRx (если LxRx = 0, то проекции имеют только общую точку).

1.4. Точка пересечения отрезков

Для определения места пересечения отрезков (если известно, что они пересекаются), достаточно определить точку пересечения прямых, на которых эти отрезки лежат.

Пусть A1x + B1y + C1 = 0 является уравнением прямой, проходящей через концевые точки первого отрезка, а A2x + B2y + C2 = 0 является уравнением прямой, проходящей через концевые точки второго отрезка.

Тогда для определения точки пересечения отрезков достаточно решить систему уравнений

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Домножив первое уравнение на A2, а второе уравнение на A1, получим

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Вычитая из первого уравнения второе, можно найти значение y:

y = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Аналогично можно вычислить значение x:

x = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Это справедливо в случае, если выражение A2 * B1 – A1 * B2 ¹ 0. Но мы уже знаем, что отрезки пересекаются и не лежат на одной прямой. А это невозможно, если A2 * B1 – A1 * B2 = 0.

2.1 Расстояния между точками. Расстояние от точки до прямой

Расстояние между точками M1(x1; y1) и M2(x2; y2) на плоскости ( рис. 8 ) определяется по формуле

D = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой.

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Расстояние от точки до прямой на плоскости определяется как длина отрезка перпендикуляра, опущенного из точки на прямую. Уравнение вида

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой,

где T = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой, причем С £ 0 (чего можно достигнуть изменением знака выражения), называется нормальным уравнением прямой. Это уравнение обладает тем свойством, что при подстановке координат произвольной точки в выражение (Ax + By + C)/T получается значение, по абсолютной величине равное расстоянию от точки до прямой ( рис. 9 ).

Запишем алгоритм для определения расстояния от точки (x3; y3) до прямой, проходящей через точки (x1; y1) и (x2; y2).

C:= – x1*(y2 – y1)+y1*(x2 – x1) (1. 5)

Рассмотрим пример: x1 = 0, y1 = 0, x2 = 3, y2 = 4 x3 = –1, y3 = 7. Уравнение прямой, проходящей через точки (x1; y1) и (x2; y2), будет следующим:

Т = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= 5,

D = Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой= 5.

2.2. Расстояние между точкой и отрезком

Для определения расстояния между точкой и отрезком необходимо выяснить, пересекает ли перпендикуляр, опущенный из данной точки на прямую, проходящую через концы отрезка, сам отрезок. Если перпендикуляр пересекает отрезок, то расстояние между точкой и отрезком равно расстоянию между точкой и прямой, проходящей через отрезок. (Эту задачу вы уже умеете решать.)

Если перпендикуляр не пересекает отрезок, то расстояние между точкой и отрезком равно минимальному из расстояний между точкой и одним из концов отрезка.

Для определения взаимного расположения отрезка и перпендикуляра поступим следующим образом.

Рассмотрим треугольник, образованный тремя точками, две из которых (x1; y1) и (x2; y2) являются концами данного отрезка, а третья – данная точка с координатами (x3; y3) (см. рис. 10 , б, в). Конечно, может оказаться, что все точки лежат на одной прямой и такого треугольника не существует. В этом случае, однако, мы будем полагать, что треугольник существует, правда он вырожденный (особый). В вырожденном треугольнике длины сторон могут быть равными 0 (см. рис. 10 , а).

Более того, мы будем полагать, что данный отрезок является основанием рассматриваемого треугольника (см. рис. 10 , б, в).

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

При таких предположениях для решения исходной задачи нам достаточно определить, является ли один из углов при основании тупым или нет. Действительно, если один из углов при основании является тупым, то перпендикуляр, опущенный из вершины, соответствующей исходной точке, не попадает на основание (отрезок). Иначе перпендикуляр, опущенный из вершины, соответствующей исходной точке, попадает на основание (отрезок).

Для решения последней задачи воспользуемся следующим свойством. Пусть a, b, c – длины сторон треугольника, причем с – длина основания. Тогда треугольник является тупоугольным при основании, если

Поэтому, вычислив значения квадратов длин сторон, нетрудно определить, пересекает ли перпендикуляр, опущенный из точки (x3; y3) на прямую, отрезок с концами в точках (x1; y1) и (x2; y2). И если не пересекает, то расстояние от точки до отрезка равно минимуму из величин a, b. Если же пересекает, то необходимо воспользоваться свойством нормального уравнения прямой .

§ 3. Многоугольники

3.1. Виды многоугольников

Ломаной называется фигура, которая состоит из точек A1, A2, . An и соединяющих их отрезков A1A2, A2A3, . An – 1An ( рис. 11 , а). Точки называются вершинами ломаной, а отрезки – звеньями. Наиболее распространенным способом задания ломаной является использование таблицы, элементы которой соответствуют координатам вершин ломаной в порядке ее обхода из одного конца в другой. Длиной ломаной называется сумма длин ее звеньев.

Многоугольником называется замкнутая ломаная линия без самопересечений (рис. 11, б).

Плоским многоугольником называется конечная часть плоскости, ограниченная многоугольником (рис. 11, в).

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Обход плоского многоугольника называется положительным, если при обходе область расположена по левую руку, и отрицательным, если область остается по правую руку.

Расстояние между фигурами на плоскости определяется как длина минимального отрезка, один конец которого принадлежит одной фигуре, а второй конец – другой фигуре.

3.2. Выпуклость многоугольников

Многоугольник является выпуклым, если для каждой прямой, проходящей через любую его сторону, все остальные вершины лежат в одной полуплоскости относительно прямой. Проверим для каждой прямой, проходящей через вершины (x1; y1) и (x2; y2), (x2; y2) и (x3; y3), . (xn – 1; yn – 1) и (xn; yn), (xn; yn) и (x1; y1) взаимное расположение вершин многоугольника. Если они каждый раз расположены в одной полуплоскости относительно проведенной прямой, то многоугольник выпуклый. Если же найдется прямая, проходящая через одну из сторон, и пара вершин многоугольника, лежащих по разные стороны относительно проведенной прямой, то многоугольник не является выпуклым. Случаи выпуклого и невыпуклого многоугольников изображены на рис. 12.

Геометрический смысл коэффициентов при текущих координатах в общем уравнении прямой

Можно заметить, что для каждой прямой, проходящей через вершины (x1; y1) и (x2; y2), (x2; y2) и (x3; y3), . (xn – 1; yn – 1) и (xn; yn), (xn; yn) и (x1; y1) достаточно ограничится определением взаимного расположения вершин многоугольника (xn; yn) и (x3; y3), (x1; y1) и (x4; y4), . (xn – 2; yn – 2) и (x1; y1), (xn – 1; yn – 1) и (x2; y2), соответственно. Если они каждый раз расположены в одной полуплоскости относительно проведенной прямой, то многоугольник выпуклый. Если же найдется прямая и пара вершин многоугольника, лежащих по разные стороны относительно проведенной прямой, то многоугольник не является выпуклым. Поэтому для определения, является ли многоугольник выпуклым, достаточно воспользоваться алгоритмом

нц для i от 1 до n

½ j:= mod( i, n +1 ) : номер вершины после вершины i

½ k:= mod (j, n +1) : номер вершины после вершины j

½½ то m:=n : номер вершины перед вершиной i

📽️ Видео

Геометрический смысл производной. Уравнение касательнойСкачать

Геометрический смысл производной. Уравнение касательной

ЗАДАНИЕ 7 ЕГЭ (ПРОФИЛЬ). ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ.Скачать

ЗАДАНИЕ 7 ЕГЭ (ПРОФИЛЬ). ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ.

Видеоурок "Нормальное уравнение прямой"Скачать

Видеоурок "Нормальное уравнение прямой"

Уравнение прямой.Скачать

Уравнение прямой.

7 класс - Алгебра - Определение углового коэффициентаСкачать

7 класс - Алгебра - Определение углового коэффициента

Урок 10. Геометрический смысл производной. Алгебра 11 классСкачать

Урок 10. Геометрический смысл производной. Алгебра 11 класс

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.
Поделиться или сохранить к себе: