Геометрическая точка зрения уравнение бернулли

ФИЗИЧЕСКИЙ И ГЕОМЕТРИЧЕСКИЙ СМЫСЛ УРАВНЕНИЯ БЕРНУЛЛИ. НАПОР ЖИДКОСТИ

Уравнению Бернулли можно дать два различных истолкования: физическое и геометрическое.

С физической точки зрения уравнение Бернулли есть выражение закона сохранения энергии для движущейся жидкости.

Действительно, рассмотрим величину

Геометрическая точка зрения уравнение бернулли.

Эта сумма 3-х слагаемых называется полным напором жидкости или гидродинамическим напором.

С физической точки зрения напор есть механическая энергия жидкости, отнесенная к единице веса жидкости. Для того чтобы это показать, рассмотрим жидкость, движущуюся по трубопроводу (рис.4.16). Выделим в движущейся жидкости частицу M с массой m, веса Геометрическая точка зрения уравнение бернулли. Потенциальная энергия этой частицы в поле силы тяжести по отношению к плоскости сравнения 0-0 будет mgz, а потенциальная энергия, отнесенная к единице веса, будет

Геометрическая точка зрения уравнение бернулли

Читайте также:

  1. II.2. Методика построения напорной и пьезометрической линий
  2. W (живое сечение) – поверхность в пределах потока жидкости, проведенная перпендикулярно направлению струек.
  3. Активное и реактивное сопротивление элементов сети (физический смысл, математическое определение), полное сопротивление сети.
  4. Анна Каренина». Смысл эпиграфа. Трагедия женщины в конфликте с сословной моралью. Проповедь труда и любви.
  5. Аномально-вязкие нефти. Структурированные (неньютоновские) жидкости.
  6. АППАРАТУРА ДЛЯ РАСПРЕДЕЛЕНИЯ И НАПРАВЛЕНИЯ ПОТОКОВ РАБОЧЕЙ ЖИДКОСТИ
  7. Асинхронный двигатель. Т-и Г-образная схема замещения. Основные уравнения двигателя в рабочем режиме.
  8. Балансовое уравнения, это
  9. БЕЗНАПОРНОЕ ДВИЖЕНИЕ ЖИДКОСТИ В ПОРИСТОЙ СРЕДЕ
  10. БЕЗНАПОРНОЕ ДВИЖЕНИЕ ПРИ ЛАМИНАРНОМ РЕЖИМЕ
Рис. 4.16Рис. 4.17

Геометрическая точка зрения уравнение бернулли,

т.е. z — есть удельная потенциальная энергия положения частицы жидкости — энергия, отнесенная к единице веса.

Под действием давления p частица жидкости М может подняться на высоту Геометрическая точка зрения уравнение бернуллии, следовательно, совершить работу (рис.4.17)

Геометрическая точка зрения уравнение бернулли,

т.е. она обладает потенциальной энергией давления в размере

Геометрическая точка зрения уравнение бернулли.

Потенциальная энергия давления, отнесенная к единице веса, будет

Геометрическая точка зрения уравнение бернулли,

т.е. Геометрическая точка зрения уравнение бернулли— есть удельная потенциальная энергия давления частицы жидкости – энергия, отнесенная к единице веса жидкости.

Кроме того, выделенная частица обладает скоростью и, следовательно, имеет кинетическую энергию, равную Геометрическая точка зрения уравнение бернулли.

Кинетическая энергия, отнесенная к единице веса, будет

Геометрическая точка зрения уравнение бернулли.

Геометрическая точка зрения уравнение бернулли

будет, следовательно, равен полной энергии частицы жидкости, отнесенной к единице веса.

Таким образом, физическое истолкование уравнения Бернулли для элементарной струйки идеальной жидкости заключается в том, что для любых сечений 1 и 2 полная удельная энергия остается неизменной: Геометрическая точка зрения уравнение бернулли

Геометрическая точка зрения уравнение бернулли.

Геометрическая точка зрения уравнение бернуллиУравнению Бернулли можно дать наглядное геометрическое истолкование. Для этого снова рассмотрим отдельные члены суммы

Геометрическая точка зрения уравнение бернулли,

где z – геометрическая высота данной частицы жидкости над условной плоскостью сравнения.

Геометрическая точка зрения уравнение бернулли— пьезометрическая высота – высота, на которую поднимется жидкость в пьезометре.

Геометрическая точка зрения уравнение бернулли— скоростная высота — высота, на которую поднимется жидкость, имея начальную скорость u.

Таким образом, с геометрической точки зрения уравнение Бернулли в любом сечении элементарной струйки идеальной жидкости представляет собой сумму 3-х высот: геометрической, пьезометрической и скоростной, которая остается неизменной.

График уравнения Бернулли для элементарной струйки идеальной жидкости представлен на рис. 4.18.

Если сечение струйки увеличивается, то скорость падает, а давление возрастает, т.е. энергия, сохраняясь в целом, переходит из одного вида в другой (кинетическая энергия переходит в потенциальную и наоборот).

§ 4.11. УРАВНЕНИЕ БЕРНУЛЛИ ДЛЯ ЭЛЕМЕНТАРНОЙ
СТРУЙКИ РЕАЛЬНОЙ ЖИДКОСТИ

В идеальной жидкости, в отличие от реальной, отсутствуют силы внутреннего трения (отсутствует вязкость). Благодаря вязкости в реальной жидкости происходят потери механической энергии потока на трение внутри жидкости и о стенки канала. При этом происходит рассеивание (диссипация) энергии. Энергия, потерянная на трение, превращается в теплоту и идет на пополнение запаса внутренней энергии жидкости, а часть ее отводится в виде тепла через стенки канала.

Внутренняя энергия жидкости не может быть непосредственно использована для приведения жидкости в движение и поэтому в гидравлике рассматривается как потеря механической энергии (потеря напора).

Для реальной жидкости равенство Геометрическая точка зрения уравнение бернуллинарушается и вместо него имеем Геометрическая точка зрения уравнение бернулли, где Геометрическая точка зрения уравнение бернулли– потеря напора на участке 1-2. Тогда для элементарной струйки реальной жидкости уравнение Бернулли примет вид

Геометрическая точка зрения уравнение бернулли.

Таким образом, полный напор вдоль струйки реальной жидкости уменьшается. Для характеристики относительного изменения полного напора на единицу длины вводится понятие о гидравлическом уклоне

Геометрическая точка зрения уравнение бернулли.

Например, на прямом участке трубопровода 1-2

Геометрическая точка зрения уравнение бернулли,

где l1-2 — длина участка 1-2.

Таким образом, гидравлическим уклоном называется отношение потери напора к длине, на которой она происходит.

Кроме того вводится еще понятие о пьезометрическом уклоне

Геометрическая точка зрения уравнение бернулли.

Пьезометрический уклон может быть положительным, равным нулю и отрицательным.

Дата добавления: 2015-04-18 ; просмотров: 629 ; Нарушение авторских прав

Видео:Уравнение Бернулли. Диаграмма Бернулли.Скачать

Уравнение Бернулли. Диаграмма Бернулли.

Лекция 4

Геометрическая точка зрения уравнение бернулли

4.1. Уравнение Бернулли для жидкости

Рассмотрим поток жидкости, проходящий по трубопроводу переменно­го сечения (рис. 10). В первом сечении гидродинамический напор пусть ра­вен H1. По ходу движения потока часть напора H1 необратимо потеря­ется из-за проявления сил внутреннего трения жидкости и во втором сечении напор уменьшится до H2 на величину потерь напора H.

Геометрическая точка зрения уравнение бернулли

Уравнение Бeрнýлли для жидкости в самом простейшем виде записывается так:

то есть это уравнение для двух сечений потока в направлении его течения, выраженное через гидродинамические напоры и отражающее закон сохра­нения энергии (часть энергии переходит в потери) при движении жидкости.

Уравнение Бeрнýлли в традиционной записи получим, если в по­следнем ра­венстве раскроем значения гидродинамических напоров H1 и H2 (м) :

Геометрическая точка зрения уравнение бернулли.

Геометрическая точка зрения уравнение бернулли

Энергетический смысл уравнения Бeрнулли заключается в том, что оно отражает закон сохранения энергии: сумма потенциальной z+hp, кинетической v2/2g энергии и энергии потерь H остаётся неизменной во всех точках потока.

4.2. Геометрическая интерпретация уравнения Бернулли

Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z. Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.

· Как и в гидростатике, величину Z называют нивелирной высотой.

· Второе слагаемое — Геометрическая точка зрения уравнение бернуллиносит название пьезометрическая высота. Эта величина соответствует высоте, на которую поднимется жидкость в пьезометре, если его установить в рассматриваемом сечении, под действием давления P.

· Сумма первых двух членов уравнения Геометрическая точка зрения уравнение бернулли¾ гидростатический напор.

· Третье слагаемое в уравнения Бернулли Геометрическая точка зрения уравнение бернуллиназывается скоростной высотой или скоростным напором. Данную величину можно представить как высоту, на которую поднимется жидкость, начавшая двигаться вертикально со скорость u при отсутствии сопротивления движению.

· Сумму всех трёх членов (высот) называют гидродинамическим или полным напором и, как уже было сказано, обозначают буквой Н.

Геометрическая точка зрения уравнение бернулли

Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.

4.3. Энергетическая интерпретация уравнения Бернулли

Выше было получено уравнение Бернулли с использованием энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.

С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости.

Геометрическая точка зрения уравнение бернулли.

Физический смысл слагаемых, входящих в уравнение следующий:

· Z — потенциальная энергия единицы веса жидкости (удельная энергия) – энергия, обусловленная положением (высотой) единицы веса жидкости относительно плоскости сравнения (нулевого уровня), принимаемой за начало отсчета;

· Геометрическая точка зрения уравнение бернулли— потенциальная энергия единицы веса жидкости — энергия, обусловленная степенью сжатия единицы веса жидкости, находящейся под давлением Геометрическая точка зрения уравнение бернулли;

· Геометрическая точка зрения уравнение бернулли— полная потенциальная энергия единицы веса жидкости;

· Геометрическая точка зрения уравнение бернулли— кинетическая энергия единицы веса жидкости — энергия, обусловленная движением единицы веса жидкости со скоростью u;

· H — полная энергия единицы веса жидкости (полная удельная энергия).

4.4. Уравнение Бернулли для потока реальной жидкости

В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается. Т. е. напор потока Hпотока в направлении движения потока становится меньше. Если рассмотреть два соседних сечения 1-1 и 2-2, то потери гидродинамического напора Δh составят:

Геометрическая точка зрения уравнение бернулли,

где H1-1— напор в первом сечении потока жидкости,

H2-2 — напор во втором сечении потока,

h — потерянный напор — энергия, потерянная каждой единицей веса движущейся жидкости на преодоление сопротивлений на пути потока от сечения 1-1 до сечения 2-2.

С учётом потерь энергии уравнение Бернулли для потока реальной жидкости будет выглядеть

Геометрическая точка зрения уравнение бернулли

Индексами 1 и 2 обозначены характеристики потока в сечениях 1-1 и 2-2.

Если учесть, что характеристики потока V и α зависят от геометрии потока, которая для напорных потоков определяется геометрией трубопровода, понятно, что потери энергии (напора) в разных трубопроводах будут изменяться неодинаково. Показателем изменения напора потока является гидравлический уклон I, который характеризует потери напора на единице длины потока. Физический смысл гидравлического уклона – интенсивность рассеяния энергии по длине потока. Другими словами, величина I показывает, как быстро трубопровод поглощает энергию потока, протекающего в нём

Геометрическая точка зрения уравнение бернулли.

Изменение энергии по длине потока удобно проследить на графиках. Из уравнения Бернулли для потока реальной жидкости (закона сохранения энергии) видно, что гидродинамическая линия для потока реальной жидкости (с одним источником энергии) всегда ниспадающая. То же справедливо и для пьезометрической линии, но только в случае равномерного движения, когда скоростной напор Геометрическая точка зрения уравнение бернуллиа уменьшение напора происходит только за счёт изменения потенциальной энергии потока, главным образом за счёт уменьшения давления P.

4.5. Разность напоров и потери напора

Различие в применении терминов «разность напоров» и «потери напора» с одним и тем же обозначениемH поясним на примерах.

Движение жидкости происходит только при наличии разности на­поров (H = H1 — H2), от точки с бóльшим напором H1 к точке с ме­ньшим H2. Например, если два бака, заполненных водой до разных вы­сотных отметок, соединить трубопроводом, то по нему начнётся пере­текание в бак с меньшей от­меткой уровня воды под влиянием разности напоров H, равной в этом случае разности отметок уровней воды в ба­ках. При выравнивании уровней напоры в обоих баках становятся оди­наковыми H1 = H2 , разность напоров H=0 и перетекание пре­кращается.

Потери напора H отражают потерю полной энергии потока при движении жидкости. Если в предыдущем примере на трубе установить задвижку и закрыть её, то движение воды прекратится и потерь напора не будет (H = = 0), однако разность уровней воды будет создавать неко­торую разность напоров H. После открывания задвижки вода вновь начнёт перетекать по трубе и общие потери напора в трубопроводе при движении из одного бака в другой будут равны разности напоров в баках H = H1 — H2 , то есть мы опять пришли к уравнению Бернулли.

Таким образом, «разность напоров» является причиной движения воды, а «потеря напора» следствием. При установившемся движении жидкости они равны. Измеряются они в одних и тех же единицах СИ: метрах по высоте.

Обычно в гидравлических задачах при известных v или q опреде­ляемая величина H назывется потерей напора и, наоборот, при оп­ределении v или q известная H разностью напоров.

Геометрическая точка зрения уравнение бернулли

4.6. Связь давления и скорости в потоке

Связь давления и скорости в потоке жидкости — обратная: если в каком-то месте потока скорость увеличивается, то давление здесь малó, и, наоборот, там, где скорости невелики, давление повышенное. Эту законо­мерность объясним на основе уравнения Бернýлли.

Рассмотрим работу водоструйного насоса (см. рис. 11). На подходе по на­гнетательному трубопроводу 1 поток рабочей жидкости имеет относи­те­ль­но небольшую скорость v1 и высокое избыточное давление pизб1. Проходя через соплó 2, поток сужается, скорость его резко возрастает до v2. Для дальнейших рассуждений запишем уравнение Бернýлли так:

Геометрическая точка зрения уравнение бернулли.

Здесь нет z1 и z2, так как труба горизонтальная, а величиной потерь на­пора DH» 0 пренебрегаем. Так как в правой части уравнения кинети­ческая составляющая энергии потока резко возросла из-за увеличения v2, то потенциальная составляющая, связанная с избыточным давлением после соплá pизб2, наоборот, уменьшится. Величину pизб2 можно выразить из этого уравнения и найти численное значение. Если pизб2 получается отри­цательным, то, значит, возник вакуум (полное давление в струе стало меньше атмосферного). В последнем случае пьезометрическая линия опу­стится ниже отметки самой струи (см. рис 11).

Таким образом в струе рабочей жидкости после соплá образуется об­ласть пониженного давления или даже вакуум, что вызывает подсос транс­портируемой жид­кости по всасывающему трубопроводу 3 (см. рис. 11). Далее обе жидкости смешиваются в горловине 4 и транспортируются по отво­дяще­му трубопро­воду 5.

Водоструйные насосы не имеют трущихся частей, в этом их пре­имущес­тво перед механическими. По их принципу работают также эжекто­ры, гидро­эле­ваторы, насосы для создания вакуума.

Видео:Уравнение Бернулли гидравликаСкачать

Уравнение Бернулли гидравлика

Энергетический смысл уравнения Бернулли

Определения

Элементарная струйка – струйка жидкости, боковая поверхность которой образована линией тока, проходящей через бесконечно малый замкнутый контур. Распределение скоростей по поперечному сечению элементарной струйки считается равномерным, по причине малости площади поперечного сечения, поэтому коэффициент Кориолиса Геометрическая точка зрения уравнение бернуллиравен единице.

Идеальная жидкость – модель жидкости, применяемая для расчётов реальных гидродинамических процессов.

Для идеальной жидкости приняты следующие допущения:

· отсутствуют касательные напряжения между слоями жидкости, следовательно,

отсутствует вязкость жидкости, следовательно, отсутствует трение между слоями жидкости, следовательно, в жидкости отсутствуют потери напора;

· жидкость является не сжимаемой;

· в жидкости отсутствует теплопроводность, т.е. жидкость не изменяет свой объём при изменении температуры;

· поток жидкости является сплошным, т.е. в жидкости отсутствуют места пустот или переуплотнений.

Виды уравнения Бернулли

Для элементарной струйки идеальной жидкости

Для элементарной струйки коэффициент Кориолиса равен единице, в идеальной жидкости отсутствуют потери, поэтому уравнение Бернулли будет иметь вид:

Геометрическая точка зрения уравнение бернулли(1)

Для потока реальной жидкости

Для потока жидкости коэффициент Кориолиса будет иметь значение отличное от единицы, и зависеть от режима течения, для ламинарного режима α = 2, для турбулентного режима α = 1,05-1,1. Реальная жидкость имеет вязкость, следовательно, в реальной жидкости будут потери напора, поэтому уравнение Бернулли будет иметь вид:

Геометрическая точка зрения уравнение бернулли

Геометрический смысл уравнения Бернулли

Рассмотрим уравнение Бернулли для элементарной струйки идеальной жидкости (1).

В уравнении (1) все три слагаемых имеют линейную размерность [м]. Соответственно каждую высоту можно представить в виде реальных отрезков:

Геометрическая точка зрения уравнение бернуллигеометрическая высота, представляет собой расстояние от оси элементарной струйки (трубопровода) до поверхности земли.

Геометрическая точка зрения уравнение бернуллипьезометрическая высота, показывает на какую высоту, может подняться жидкость под действием избыточного давления в данной точке, при условии, что на свободную поверхность действует давление внешней газообразной среды (т.е. атмосферное давление).

Геометрическая точка зрения уравнение бернуллискоростная высота, показывает высоту, при падении с которой, частица жидкости достигла бы скорости Геометрическая точка зрения уравнение бернулли.

Геометрическая точка зрения уравнение бернулли

Рис. 1 Иллюстрация геометрического смысла уравнения Бернулли.

1 – элементарная струйка; 2 – пьезометр; 3 – трубка Пито (прибор для измерения скоростной высоты).

Геометрический смысл уравнения Бернулли заключается в следующем: по длине элементарной струйки сумма трёх слагаемых уравнения Бернулли остаётся величиной постоянной и равной величине полного напора Н [м].

Геометрическая точка зрения уравнение бернулли(2)

Энергетический смысл уравнения Бернулли

Умножим каждое слагаемое уравнения (2) на величину ускорения свободного падения:

Геометрическая точка зрения уравнение бернулли

В итоге получаем слагаемые, который можно описать с точки зрения энергии:

где Геометрическая точка зрения уравнение бернуллиудельная потенциальная энергия положения, т.е. если поднять жидкость массой 1 кг на высоту Геометрическая точка зрения уравнение бернулли, то она будет иметь потенциальную энергию Геометрическая точка зрения уравнение бернулли;

Геометрическая точка зрения уравнение бернуллиудельная потенциальная энергия давления;

Геометрическая точка зрения уравнение бернуллиудельная кинетическая энергия;

Геометрическая точка зрения уравнение бернуллиполная удельная механическая энергия элементарной струйки.

Энергетический смысл уравнения Бернулли заключается в следующем: по длине элементарной струйки сумма трёх удельных энергий остаётся величиной постоянной и равной величине полной удельной механической энергии Е [Дж]. Возможна и другая формулировка: уравнение Бернулли – это есть закон сохранения энергии для элементарной струйки (потока) жидкости, который отображает взаимный переход кинетической и потенциальной энергии.

Потери

В потоке реальной жидкости в уравнение Бернулли добавляется слагаемое Геометрическая точка зрения уравнение бернулли, которое

представляет собой величину потерь напора. Запишем уравнение Бернулли для двух произвольных сечений потока жидкости:

Геометрическая точка зрения уравнение бернулли

С геометрической точки зрения потери отображаются отрезком, расположенным над скоростным напором, при этом потери отображаются во втором сечении.

Геометрическая точка зрения уравнение бернулли

Рис. 2. Иллюстрация потерь напора.

С энергетической точки зрения Геометрическая точка зрения уравнение бернуллиэто величина, показывающая, сколько энергии жидкость тратит на преодоление различных сопротивлений при переходе из первого сечения во второе сечение.

6. Порядок проведения расчётов:

1. Определить величину расхода жидкости:

Геометрическая точка зрения уравнение бернулли

2. Поскольку диаметры d1=d3, дальнейшие расчёты для широких частей трубопровода будут одинаковы. Поэтому будем проводить расчёт для одной широкой части трубопровода, при этом параметры жидкости, обозначая через индекс 1-3

Определить площади поперечного сечения трубопроводов S1-3, S2 [м];

3. Определить скорость течения жидкости:

Геометрическая точка зрения уравнение бернуллиГеометрическая точка зрения уравнение бернулли

4. Определить режим течения жидкости:

5. Определить величины скоростного напора: Геометрическая точка зрения уравнение бернулли; Геометрическая точка зрения уравнение бернулли

6. На листе А4 построить график, зависимости изменения пьезометрического напора от

длины сечения трубопровода.По оси Х откладываются расстояния между точками, к которым подключены пьезометры. Расстояния равны: А=25см, В=12,5 см

Геометрическая точка зрения уравнение бернулли

Рис. 3 Условное изображение исследуемого

трубопровода с точками подключения пьезометров.

По оси Y откладываются показания соответствующих пьезометров. В результате получится шесть точек, который соединяются ломаной линией. Поскольку экспериментальные исследования проводились для трёх различных случаев, поэтому в результате мы имеем три графика в одной системе координат.

7. На листе А4 построить график, зависимость изменения скоростного напора от длины

сечения трубопровода.По оси Х откладывается расстояние между точками, к которым подключены пьезометры. Расстояния равны: А=25см, В=12,5 см.

По оси Y откладываются значения скоростного напора. Поскольку экспериментальные исследования проводились для трёх различных случаев, поэтому в результате мы имеем три графика в одной системе координат.

8. Вывод о работе с описанием графиков

Таблица 1. Результаты опыта

📸 Видео

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Урок 134. Применения уравнения Бернулли (ч.1)Скачать

Урок 134. Применения уравнения Бернулли (ч.1)

Уравнение Бернулли для потока жидкостиСкачать

Уравнение Бернулли для потока жидкости

Закон БернуллиСкачать

Закон Бернулли

Уравнение БернуллиСкачать

Уравнение Бернулли

Закон БернуллиСкачать

Закон Бернулли

Уравнение Бернулли и его приложения | Гидродинамика, ГидравликаСкачать

Уравнение Бернулли и его приложения | Гидродинамика, Гидравлика

09 Уравнение бернуллиСкачать

09  Уравнение бернулли

ЛР3 Уравнение БернуллиСкачать

ЛР3 Уравнение Бернулли

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Гидродинамика. Вывод уравнения БернуллиСкачать

Гидродинамика. Вывод уравнения Бернулли

УРАВНЕНИЕ БЕРНУЛЛИ | УЧЕБНЫЙ ФИЛЬМ ПО ГИДРАВЛИКЕСкачать

УРАВНЕНИЕ БЕРНУЛЛИ | УЧЕБНЫЙ ФИЛЬМ ПО ГИДРАВЛИКЕ

Основы гидродинамики и аэродинамики | уравнение БернуллиСкачать

Основы гидродинамики и аэродинамики | уравнение Бернулли

Дистанционная работа 5 - иллюстрация уравнения БернуллиСкачать

Дистанционная работа 5 - иллюстрация уравнения Бернулли

Уравнение Бернулли. Практическая часть. 10 класс.Скачать

Уравнение Бернулли. Практическая часть. 10 класс.

Эффект Магнуса и уравнение БернуллиСкачать

Эффект Магнуса и уравнение Бернулли

Математика без Ху!ни. Теория вероятностей. Схема БернуллиСкачать

Математика без Ху!ни. Теория вероятностей. Схема Бернулли
Поделиться или сохранить к себе: