Кислород
Положение в периодической системе химических элементов
Кислород расположен в главной подгруппе VI группы (или в 16 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение кислорода
Электронная конфигурация кислорода в основном состоянии :
+8O 1s 2 2s 2 2p 4 1s 2s 2p
Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.
Физические свойства и нахождение в природе
Кислород О2 — газ без цвета, вкуса и запаха, немного тяжелее воздуха. Плохо растворим в воде. Жидкий кислород – голубоватая жидкость, кипящая при -183 о С.
Озон О3 — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода.
Кислород — это самый распространённый в земной коре элемент. Кислород входит в состав многих минералов — силикатов, карбонатов и др. Массовая доля элемента кислорода в земной коре — около 47 %. Массовая доля элемента кислорода в морской и пресной воде составляет 85,82 %.
В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе.
Способы получения кислорода
В промышленности кислород получают перегонкой жидкого воздуха.
Лабораторные способы получения кислорода:
- Разложение некоторых кислородосодержащих веществ:
Разложение перманганата калия:
Разложение бертолетовой соли в присутствии катализатора MnO2 :
2KClO3 → 2KCl + 3O2
Разложение пероксида водорода:
2HgO → 2Hg + O2
Соединения кислорода
Основные степени окисления кислород +2, +1, 0, -1 и -2.
Степень окисления | Типичные соединения |
+2 | Фторид кислорода OF2 |
+1 | Пероксофторид кислорода O2F2 |
-1 | Пероксид водорода H2O2 Пероксид натрия Na2O2 и др. |
-2 | Вода H2O Оксиды металлов и неметаллов Na2O, SO2 и др. Соли кислородсодержащих кислот Кислородсодержащие органические вещества Основания и амфотерные гидроксиды |
Химические свойства
При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.
1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.
1.1. Кислород реагирует с фтором с образованием фторидов кислорода:
С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.
1.2. Кислород реагирует с серой и кремнием с образованием оксидов:
1.3. Фосфор горит в кислороде с образованием оксидов:
При недостатке кислорода возможно образование оксида фосфора (III):
Но чаще фосфор сгорает до оксида фосфора (V):
1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):
N2 + O2→ 2NO
1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:
2Ca + O2 → 2CaO
Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:
2Na + O2→ Na2O2
А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:
K + O2→ KO2
Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.
Цинк окисляется до оксида цинка (II):
2Zn + O2→ 2ZnO
Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:
2Fe + O2→ 2FeO
4Fe + 3O2→ 2Fe2O3
3Fe + 2O2→ Fe3O4
1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):
при недостатке кислорода образуется угарный газ СО:
2C + O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Кислород взаимодействует со сложными веществами:
2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:
4FeS + 7O2→ 2Fe2O3 + 4SO2
Ca3P2 + 4O2→ 3CaO + P2O5
2.2. Кислород окисляет бинарные соединения неметаллов:
- летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:
2H2S + 3O2→ 2H2O + 2SO2
Аммиак горит с образованием простого вещества, азота:
4NH3 + 3O2→ 2N2 + 6H2O
Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):
4NH3 + 5O2→ 4NO + 6H2O
- прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):
CS2 + 3O2→ CO2 + 2SO2
- некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):
2CO + O2→ 2CO2
2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.
Например , кислород окисляет гидроксид железа (II):
Кислород окисляет азотистую кислоту :
2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:
CH4 + 2O2→ CO2 + 2H2O
2CH4 + 3O2→ 2CO + 4H2O
CH4 + O2→ C + 2H2O
Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)
Видео:Химические Цепочки — Решение Цепочек Химических Превращений // Химия 8 классСкачать
Генетический ряд кислорода с уравнениями
Внимательно прочитайте теорию:
Давайте рассмотрим генетические связи и генетические ряды:
1. Все вещества этого ряда должны быть образованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:
нельзя считать генетическим, так как в последнем звене элемент бром отсутствует, хотя реакция для перехода от NaBr к NaNO 3 легко осуществима:
Этот ряд мог бы считаться генетическим рядом элемента брома, если бы его завершили, например, так:
2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, т. е. отражать разные формы его существования.
3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.
Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:
уже можно рассматривать как полный: он начинается простым веществом бромом и им же заканчивается.
Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ — представителей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис. |
Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов: генетический ряд элемента-металла, генетический ряд элемента-неметалла, генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид.
I. Генетический рад элемента-металла. Наиболее богат веществами ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:
Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):
II. Генетический ряд элемента-неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6:
Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое восстановленное его соединение, например летучее водородное соединение неметалла. В нашем примере:
По этой реакции в природе из вулканических газов образуется сера.
Аналогично для хлора:
III. Генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями, так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд алюминия:
В органической химии также следует различать более общее понятие — «генетическая связь» и более частное понятие — «генетический ряд». Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле.
Каждой цифре соответствует определенное уравнение реакции:
Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:
Восстановление оксида кальция в карбид:
Гидролиз карбида кальция:
Самостоятельная работа в тетради (четкую фотографию выслать на почту: apnikitina98@gmail.com в теме указав ФИ, класс):
- Запишите уравнения реакций, иллюстрирующих следующие переходы:
Домашняя работа (сделать в тетради, посмотрю в школе, высылать не нужно)
Запишите уравнения реакций, иллюстрирующих следующие превращения:
Видео:Химические Цепочки — Решение Цепочек Химических Превращений // Химия 8 классСкачать
Генетический ряд неметаллов.
Рассмотрим генетический ряд неметаллов на примере данной упрощенной схемы.
Все вещества делятся на 2 группы: простые и сложные. Неметалл при взаимодействии с кислородом дает кислотный оксид. Рядом стоящий водород (наряду с неметаллом) дает идеальный амфотерный оксид – воду. При взаимодействии воды с кислотным оксидом образуется соответствующая кислота:
В то же время результатом взаимодействия бескислородной кислоты и металла или металла с кислотным оксидом будет является соль (кислая или средняя), в зависимости от основной кислоты:
Взаимодействия различных веществ по разные стороны от волнистой линии являются окислительно-восстановительными процессами, поэтому протекают с изменением степени окисления.
Представления в этом генетическом ряду неметаллов весьма упрощенные, но отражают основные аспекты взаимодействия соединений.
💥 Видео
8 класс. Цепочки превращений. Генетические ряды.Скачать
8 класс. Химия. Генетический ряд металла.Скачать
Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать
Генетический ряд неметалловСкачать
Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать
Решение цепочек превращений по химииСкачать
8 класс. Составление уравнений химических реакций.Скачать
Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Генетическая связь между классами веществ | Химия 8 класс #51 | ИнфоурокСкачать
Составление уравнений химических реакций. 1 часть. 8 класс.Скачать
Химия 8 класс (Урок№11 - Кислород: получение, физические и химические свойства,применение. Оксиды.)Скачать
Свойства кислорода. 8 класс.Скачать
Физические и химические свойства кислорода Применение кислородаСкачать
Генетическая связь между классами неорганических веществ. Химия 8 классСкачать
Расчеты по уравнениям химических реакций. 1 часть. 8 класс.Скачать
8 КЛАСС | Как решать ЦЕПОЧКИ ХИМИЧЕСКИХ РЕАКЦИЙ | Цепочки превращенийСкачать
Генетическая связь между классами неорганических веществ. Видеоурок по химии 8 классСкачать
Химия | КислородСкачать