//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
- Калькулятор онлайн. Решение квадратного уравнения.
- Немного теории.
- Квадратное уравнение и его корни. Неполные квадратные уравнения
- Формула корней квадратного уравнения
- Теорема Виета
- Онлайн калькулятор. Решение квадратных уравнений.
- Калькулятор квадратных уравнений
- Ввод данных в калькулятор квадратных уравнений
- Дополнительные возможности калькулятора квадратных уравнений
- Теория. Решение квадратных уравнений.
- Квадратные уравнения (генератор карточек)
- 🎦 Видео
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Калькулятор онлайн.
Решение квадратного уравнения.
С помощью этой математической программы вы можете решить квадратное уравнение.
Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).
Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )
При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)
Видео:Быстрый способ решения квадратного уравненияСкачать
Немного теории.
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Квадратное уравнение и его корни. Неполные квадратные уравнения
Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.
Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).
Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.
В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.
Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.
Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )
Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.
Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.
Рассмотрим решение уравнений каждого из этих видов.
Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )
Так как ( c neq 0 ), то ( -frac neq 0 )
Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.
Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.
Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать
Формула корней квадратного уравнения
Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.
Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.
Решим квадратное уравнение ax 2 +bx+c=0
Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )
Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )
Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )
Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )
Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Теорема Виета
Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )
Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Онлайн калькулятор. Решение квадратных уравнений.
Используя этот онлайн калькулятор для решения квадратных уравнений, вы сможете очень просто и быстро найти корни квадратного уравнения.
Воспользовавшись онлайн калькулятором для решения квадратных уравнений, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный на уроках материал.
Видео:Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать
Калькулятор квадратных уравнений
Ввод данных в калькулятор квадратных уравнений
Если в квадратном уравнении есть знаки вычитания, то перед соответствующими коэффициентами в онлайн калькуляторе нужно поставить знак минус («-«).
Например, квадратное уравнение x 2 — x — 5 = 0, вводится в калькулятор следующим образом:
Если в квадратном уравнение меньше трех слагаемых, то рядом с отсутствующим слагаемым в онлайн калькуляторе необходимо ввести коэффициент ноль («0»).
Например, квадратное уравнение: x 2 — 4 x = 0, вводится в калькулятор следующим образом:
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора квадратных уравнений
- Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.
Теория. Решение квадратных уравнений.
a x 2 + b x + c = 0,
где a не равно 0.
Для решения квадратного уравнения необходимо посчитать дискриминант многочлена
- Если D > 0, то уравнение имеет два различных вещественных корня.
- Если D = 0, то уравнение имеет один корень ( x 1 = x 2).
- Если D x 1,2 =
— b ± √ D 2 a
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Видео:Как решать квадратные уравнения без дискриминантаСкачать
Квадратные уравнения (генератор карточек)
Генератор формирует карточки, состоящие из 8 уравнений различной трудности с учетом практически всех частных случаев, встречающихся в уравнениях выбранного типа.
Организован отбор уравнений по их виду (неполные, полные и приведенные) и по виду корней (целые, рациональные и вещественные).
Возможен вывод уравнений с измененным порядком их членов.
Все уравнения формируются АВТОМАТИЧЕСКИ по собственным подпрограммам из случайных чисел и включаются в вариант в произвольном порядке.
Все карточки, а также ВСЕ ОТВЕТЫ ВСЕХ ВАРИАНТОВ после просмотра можно сохранить в двух файлах Microsoft Word для последующей печати.
ВНИМАНИЕ!
Для просмотра уравнения и ответы выводятся в упрощенной (строчной) форме, где квадратные корни имеют вид: КК (подкоренное выражение).
Преобразование всех уравнений и ответов к обычному виду производится АВТОМАТИЧЕСКИ при их сохранении.
Целевая аудитория: для 8 класса
Автор: Ермолин Сергей Александрович
Место работы: Центр информационной культуры
Добавил: ЕСА_1954
Физкультминутки обеспечивают кратковременный отдых детей на уроке, а также способствуют переключению внимания с одного вида деятельности на другой.
Уважаемые коллеги! Добавьте свою презентацию на Учительский портал и получите бесплатное свидетельство о публикации методического материала в международном СМИ.
Диплом и справка о публикации каждому участнику!
© 2007 — 2022 Сообщество учителей-предметников «Учительский портал»
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель: Никитенко Евгений Игоревич
Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.
Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.
Фотографии предоставлены
🎦 Видео
Неполные квадратные уравнения. Алгебра, 8 классСкачать
Ещё один способ решения квадратных уравненийСкачать
РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать
Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать
РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать
САМЫЙ ЛЕГКИЙ способ решения Квадратного Уравнения #shorts #youtubeshortsСкачать
Алгебра 8 класс : Формулы корней квадратного уравненияСкачать
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
4.Квадратное уравнение. Дискриминант отрицательный.Скачать
Как решать неполное квадратное уравнение? 😎Скачать
Квадратное уравнение. 8 класс.Скачать
Решение квадратных уравнений. Дискриминант. Практическая часть. 3ч. 8 класс.Скачать