Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Где встречаются тригонометрические уравнения экономике программировании геодезии черчении

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

«Тригонометрические уравнения»

Задание по алгебре для 10 класса — «Тригонометрические уравнения»

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Задание по алгебре для 10 класса — «Тригонометрические уравнения»

0 из 10 заданий окончено

Информация

Выполните задание онлайн олимпиады и узнайте результат.
Для зарегистрированных участников, результаты отправляются на электронную почту.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: 0 из 10

Вы набрали 0 из 0 баллов ( 0 )

Рубрики

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Поздравляем!
Вы отлично справились с заданием.
Ваш результат соответствует 1 месту.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Поздравляем!
Вы хорошо справились с заданием.
Ваш результат соответствует 2 месту.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Поздравляем!
Вы выполнили задние допустив незначительное количество ошибок.
Ваш результат соответствует 3 месту.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Сделайте работу над ошибками.
Попробуйте пройти тестирование еще раз и добиться хорошего результата.
Ваш результат может стать значительно лучше.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Тригонометрия в реальной жизни

Содержимое публикации

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ПРОФЕССИОНАЛЬНАЯ

«КУБАНСКИЙ ИНСТИТУТ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ»

по дисциплине: «Математика»

на тему: «Тригонометрия в реальной жизни»

Выполнил студент группы 20-ПД1-9

Онищенко Виктория Александровна

Преподаватель математики, Ширяева Е.А.

1. История развития тригонометрии. Древнейшие века………………………..5

1.1 Дальнейшее развитие тригонометрии. Средние века……………………8

2. Тригонометрия в реальной жизни…………………………………. ………11

2.1 Тригонометрия в алгебре…………………………………..………. ….11

2.2 Тригонометрия в физике……………………………..…………………. 13

2.3 Тригонометрия в навигации…………………………………. …..……..14

2.4 Тригонометрия в биологии и медицине…………………………………15

2.5 Тригонометрия в геодезии, строительстве и архитектуре……..……….19

2.6 Тригонометрия в информатике……………..………………………. ….20

2.7 Тригонометрия в музыке………………………………………….….…..20

В современном мире значительное внимание уделяют математике, как одной из областей научной деятельности и изучения. Как мы знаем, одной из составляющих математики, является тригонометрия.

Тригонометрия — это раздел математики, который изучает тригонометрические функции.

Актуальность темы «Тригонометрия в реальной жизни» заключается в том, что знания тригонометрии откроют новые способы решения различных задач во многих областях науки и упростят понимание некоторых аспектов различных наук.

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия используется в астрономии для измерения расстояния до недалёких звёзд, в географии для измерения расстояния между ориентирами, для контроля системы навигации спутников. Так же тригонометрические функции используются в таких областях как медицина, анализ финансовых рынков, теория вероятностей, экономика, оптика, фармацевтика, химия, картография, архитектура, биология и другие. Именно поэтому я считаю, что данная тема актуальна с практической точки зрения.

Цель моего проекта — это развитие интереса к изучению темы «Тригонометрия» в курсе математики, расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология и т.п.

Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, позволяют лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

1. Познакомиться с историей возникновения и развития тригонометрии.

2. Рассмотреть примеры практического воздействия тригонометрии в различных сферах деятельности

3. Показать на конкретных примерах возможности применения тригонометрии в жизни человека.

Методы: Поиск и сбор информации

История развития тригонометрии. Древнейшие века

Что такое тригонометрия? Данный термин подразумевает под собой раздел в математике, который занимается изучением зависимости между различными величинами углов, изучает длины сторон треугольника и алгебраические тождества тригонометрических функций. Трудно представить, что данная область математики встречается нам в повседневной жизни.

Давайте обратимся к истории ее развития, этапам формирования. С древних времен тригонометрия набирала свои зачатки, развивалась и показывала первые результаты. Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Можно отметить, что в древние времена тригонометрия применялась для точного установления времени суток, нахождения географических координат текущего места, вычисления предстоящего местоположения небесных светил, эпизодов их восхода и захода, затмений Солнца и Луны, подсчета дистанции между городами с известными географическими координатами.

Гномон— древний астрономический механизм, вертикальный предмет (стела, колонна, шест), который позволяет с помощью наименьшей длины его тени в полдень определить угловую высоту солнца.

Таким образом, котангенс представлялся нам как длина тени от вертикального гномона высотой 12 (иногда 7) единиц. Отметим, что в первоначальном варианте, данные определения использовались для расчёта солнечных часов. Тангенс представлялся тенью падающей от горизонтального гномона. Косеканс и секанс понимаются в качестве гипотенуз, которые соответствуют прямоугольным треугольникам.

Длительную историю имеет представление синуса. История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите — дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Тригонометрические функции встречаются ещё в 3 в. до н.э. в трудах знаменитых математиков Античной Греции — Евклида, Архимеда, Аполлония Пергского. В римский промежуток времени данные взаимоотношения уже довольно регулярно изучались Менелаем (I в. н. э.), хотя и не получили особого названия. Современный синус угла α, например, изучается как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги.

В последующий промежуток математика длительное время наиболее стремительно формировалась индийскими и арабскими учёными. В 4-5 веках возник, в частности, ранее особый термин в трудах по астрономии знаменитого индийского учёного Ариабхаты (476-ок. 550), именем коего назван первый индусский спутник Земли. Отрезок он назвал ардхаджива (ардха—половина, джива—тетива излом, которую напоминает ось). Позже привилось более сокращенное наименование джива. Арабскими математиками в IXв. термин джива (либо джиба) было заменено на арабское слово джайб (вогнутость). При переходе арабских математических текстов в XIIв. это слово было заменено латинскимсинус (sinus—изгиб)

Определение и возникновение термина «косинус» носит более кратковременный и недалекий характер. Под косинусом понимается «дополнительный синус» (или иначе «синус дополнительной дуги». Интересным фактом является то, что первые способы решения треугольников, которые основаны на зависимости между сторонами и углами треугольника, найденные астрономом из Древней Греции Гиппархом во втором веке до нашей эры. Данным изучением также занимался Клавдий Птолемей. Постепенно, появлялись новые факты о зависимости между отношениями сторон треугольника и его углами, начали применять новое определение — тригонометрическая функция.

Существенный вклад в формирование тригонометрии привнесли арабские эксперты Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который собрал таблицы синусов и тангенсов посредством 10’ с правильностью вплоть до 1/604. Теорему синусов ранее знали индийский профессор Бхаскара (р. 1114, год смерти безызвестен) и азербайджанский астролог и ученый Насиреддин Туси Мухамед (1201-1274). Помимо этого, Насиреддин Туси в собственной работе «Труд о полном четырехстороннике» рассказал прямую и сферическую тригонометрию как независимую дисциплину.

Тангенсывозникли в взаимосвязи с заключением задачи об установлении длины тени. Тангенс (а кроме того котангенс) установлен в X веке аравийским арифметиком Абу-ль-Вафой, который составил и первоначальные таблицы для нахождения тангенсов и котангенсов. Но данные открытия длительное время сохранились незнакомыми европейским ученым, и тангенсы были вновь открыты только в XIV веке германским арифметиком, астрономом Регимонтаном (1467 г.). Он аргументировал теорему тангенсов. Региомонтан составил также детальные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Обозначение «тангенс», происходившее от латинского tanger (касаться), возникло в 1583 г. Tangens переводится как «затрагивающий» (линия тангенсов – касательная к единичной окружности).
Дальнейшее формирование тригонометрия получила в работах выдающихся астрологов Николая Коперника (1473-1543) , Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а кроме того в трудах математика Франсуа Виета (1540-1603), который целиком решил проблему в определении абсолютно всех компонентов плоского либо сферического треугольника по трем данным.

1.1 Дальнейшее развитие тригонометрии. Средние века

Слово «тригонометрия» впервые встречается (1505 г) в заглавии книги немецкого теолога и математика Питискуса. У данного слова греческое происхождение: треугольник, мера. Иными словами, тригонометрия — наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Долгое время тригонометрия носила исключительно геометрический вид, т. е. данные, которые мы в настоящее время формулируем в определениях тригонометрических функций, формулировались и аргументировались с поддержкой геометрических понятий и утверждений. Пожалуй, максимальные стимулы к формированию тригонометрии появлялись в взаимосвязи с решением задач астрономии, что давало огромный положительный интерес (например, с целью решения вопросов установления месторасположения корабля, прогноза затемнения и т. д.). Астрологов занимали соотношения между сторонами и углами сферических треугольников. А арифметики древности успешно справлялись с поставленными вопросами.

Начиная с XVII в., тригонометрические функции стали применять к решению уравнений, вопросов механики, оптики, электричества, радиотехники, с целью отображения колебательных действий, распространения волн, перемещения разных элементов, для исследования переменного гальванического тока и т. д. По этой причине тригонометрические функции всесторонне и глубоко изучались, и получили существенное значение для целой математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греческого gwnia — угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.

Тригонометрия в реальной жизни

Современное общество характеризуется постоянными изменениями, открытиями, созданием высокотехнологичных изобретений, улучшающих нашу жизнь.

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света — без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии — это геодезист. Используя теодолит и нивелир либо более сложный прибор — тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Помимо этого, тригонометрия взаимодействует с биологией, медициной, геофизикой, навигацией, информатикой и даже музыкой.

Познакомимся по порядку с взаимодействием в каждой отрасли.

Тригонометрия в алгебре

Первое, и самое очевидное, место применения тригонометрии – это ее применение в алгебре. Именно благодаря тригонометрическим функциям решаются очень сложные, требующие больших вычислений уравнения и задачи.

Основные тригонометрические тождества (рис. 1) задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности. Они позволяют выразить одну тригонометрическую функцию через любую другую.

Рисунок 1 — Основные тригонометрические тождества

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого «тригонометрического круга» (рис. 2), то вся тригонометрия будет вам подвластна.

Рисунок 2 – Тригонометрический круг

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Как мы знаем, во всех случаях, где необходимо взаимодействовать с периодическими процессами и колебаниями мы приходим к использованию тригонометрических функций. При этом не имеет значения, что это такое: акустика, оптика или качание маятника.

Тригонометрия в физике

Кроме алгебры, тригонометрия оказывает прямое влияние и воздействие в физике.

При погружении объектов в воду они никак не изменяют ни формы, ни объемов. Полный секрет — зрительный эффект который вынуждает наше зрение принимать предмет по-другому. Простые тригонометрические формулы и значения синуса угла падения и преломления полупрямой предоставляют вероятность высчитать постоянный показатель преломления при переходе светового луча из сферы в сферу. К примеру, радуга появляется из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

sin α / sin β = n1 / n2

где: n1 является показателем преломления первой среды; n2 является показателем преломления второй среды; α-углом падения, β-углом преломления света.

Попадание в верхние слои атмосферы планет заряженных элементов солнечного ветра обусловливается взаимодействием магнитного поля земли с солнечным ветром.

Сила, действующая на перемещающуюся в магнитном область заряженную частичку, именуется силой Лоренца. Она соразмерна заряду частицы и векторному произведению поля и скорости перемещения частицы.

Раскрывая практические стороны применения тригонометрии в физике, приведем пример. Данная задача должна решаться с использованием тригонометрических формул и способов решения. Условия задачи: на наклонной плоскости, угол которой 24,5о, располагается тело массой 90 кг. Необходимо найти, какой силой располагает тело, давящее на на наклонную плоскость (т.е какое давление оказывает тело на эту плоскость) (рис.6).

Обозначив оси Х и У, начнем строить проекции сил на оси, для начала воспользовавшись данной формулой:

ma = N + mg, затем смотрим на рисунок,

Х : ma = 0 + mg sin24,50

Y : 0 = N – mg cos24,50

подставляем массу, находим, что сила равна 819 Н.

Тригонометрия в навигации

Навигация (это слово происходит от латинского navigatio – плыву на судне) – одна из наиболее древних наук. Ученые разрабатывают несложные навигации, представляющие собой построение маршрута из одной точки в другую, его оценка и выбор лучшего варианта из всех предложенных. Данные маршруты необходимы мореплавателям, которые в течение своего путешествия сталкиваются с множеством трудностей, преград, вопросов по курсу движения. Также навигация необходима: летчикам, которые управляют сложными высокотехничными самолетами, ориентируются, порой в очень экстремальных ситуациях; космонавтам, чья работа связана с риском для жизни, с сложным построением маршрута и его освоением.

Интересным примером можно описать следующее. При создании маршрута мореходцами, необходимо точная и кропотливая работа. Так, для прокладки курса корабля на карте, которая была выполнена в проекции Герхарда Меркатора в 1569году, была острая необходимость определить , широту. Однако при выходе в море, в локациях до XVII века мореплавателями широта не указывалась. Впервые применил тригонометрические расчеты в навигации Эдмонд Гюнтер(1623).

С помощью тригонометрии, пилоты могли рассчитывать ветряные погрешности, для наиболее точного и безопасного ведения самолета.

Для решения навигационного треугольника скоростей используются счетные устройства, использующие навигационную линейку и подсчеты в уме.

Тригонометрия в биологии и медицине

Четвертой областью, где серьезное влияние и помощь оказывает тригонометрия, являются сразу две области: медицина и биология.

Одно из фундаментальных свойств живой природы — это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, — это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические, имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись — бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов

· Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

· Эмоциональный цикл — 28 дней. Состояние нервной системы и настроение

· Интеллектуальный цикл — 33 дня. Определяет творческую способность личности

Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Тригонометрия в медицине. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем — на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по происшествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект — переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

Тригонометрия в геодезии, строительстве и архитектуре

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Вся «классическая» геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что «решают» треугольники.

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат.

Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства. Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения.

Ситуация меняется , так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу.

Тригонометрия в информатике

Не обошла тригонометрия со своим влиянием и информатику. Так, ее функции применимы для точных расчётов.

Тригонометрия оказывает серьезную роль и помощь в развитии и в процессе работы с графической информацией. Если нужно смоделировать процесс, с описанием в электронном виде, с вращение определенного объекта вокруг некоторой оси. Возникает поворот на некоторый угол. Для определения координат точек придётся умножать на синусы и косинусы.

Так, можно привести в пример Джастина Уиндела, программиста и дизайнера, работающего в Google Grafika Lab. Он опубликовал демо, которое показывает пример использования тригонометрических функций, чтобы создать динамическую анимацию.

Тригонометрия в музыке

Музыкальная сфера деятельности также взаимодействует с тригонометрией.

Представляю вашему вниманию интересную информацию о неком методе, который точно обеспечивает связь между тригонометрией и музыкой.

Этот метод анализа музыкальных произведений получил название «геометрическая теория музыки». С его помощью основные музыкальные структуры и преобразования переводятся на язык современной геометрии.

Каждая нота в рамках новой теории представляется как логарифм частоты соответствующего звука (нота «до» первой октавы, к примеру, соответствует числу 60, октава – числу 12). Аккорд, таким образом, представляется как точка с заданными координатами в геометрическом пространстве. Аккорды сгруппированы в различные «семейства», которые соответствуют различным типам геометрических пространств.

При разработке нового метода авторы использовали 5 известных типов музыкальных преобразований, которые ранее не учитывались в теории музыки при классификации звуковых последовательностей – октавная перестановка (O), пермутация (P), транспозиция (T), инверсия (I) и изменение кардинальности (C). Все эти преобразования, как пишут авторы, формируют так называемые OPTIC-симметрии в n-мерном пространстве и хранят музыкальную информацию об аккорде – в какой октаве находятся его ноты, в какой последовательности они воспроизведены, сколько раз повторяются и проч. С помощью OPTIC-симметрий классифицируются подобные, но не идентичные аккорды и их последовательности.

Авторы статьи показывают, что различные комбинации этих 5-ти симметрий формируют множество различных музыкальных структур, одни из которых уже известны в теории музыки (последовательность аккордов, к примеру, будет выражаться в новых терминах как OPC), а другие являются принципиально новыми понятиями, которые, возможно, возьмут на вооружение композиторы будущего.

В качестве примера авторами приводится геометрическое представление различных типов аккордов из четырех звуков – тетраэдр. Сферы на графике представляют типы аккордов, цвета сфер соответствуют величине интервалов между звуками аккорда: синий – малые интервалы, более теплые тона – более «разреженные» звуки аккорда. Красная сфера – наиболее гармоничный аккорд с равными интервалами между нотами, который был популярен у композиторов XIX века.

«Геометрический» метод анализа музыки, по мнению авторов исследования, может привести к созданию принципиально новых музыкальных инструментов и новых способов визуализации музыки, а также внести изменения в современные методики преподавания музыки и способы изучения различных музыкальных стилей (классики, поп-музыки, рок-музыки и проч.). Новая терминология также поможет более углубленно сравнивать музыкальные произведения композиторов разных эпох и представлять результаты исследований в более удобной математической форме. Иными словами, предлагается выделить из музыкальных произведений их математическую суть.

Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8… Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

Изучив теоретические и прикладные аспекты тригонометрии, я поняла, что данная отрасль тесно связана со многими науками. Тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Тригонометрия тесно связана с физикой, встречается в природе, музыке, архитектуре, медицине, биологии, навигации и строительстве.

Тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться, поэтому знание её законов необходимо каждому.

Так, благодаря тригонометрическим функциям в медицине была открыта формула сердца, представляющая собой — комплексное алгебраически-тригонометрическое равенство, которое состоит из 8 выражений, 32 коэффициентов и 33 основных параметров, включающих возможность дополнительных просчетов при возникновении аритмии. Данное открытие помогает врачам выполнять более квалифицированно и качественно медицинскую помощь.

Отметим также, что вся классическая геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что «решают» треугольники. Процесс строительства зданий, дорог, мостов и других сооружений начинается с изыскательских и проектных работ. Все измерения на стройке проводятся с помощью геодезических инструментов, таких как теодолит и тригонометрический нивелир. При тригонометрическом нивелировании определяют разность высот между несколькими точками земной поверхности.

Знакомясь с ее влиянием в других областях, мы можем сделать вывод о том, что тригонометрия активно влияет на жизнедеятельность человека. Связь математики с окружающим миром позволяет «материализовать» знания школьников. Благодаря этому, мы можем адекватнее воспринять и усвоить знания и информацию, которую нам преподают в школе.

Цель моего проекта выполнена успешна. Мной было изучено влияние тригонометрии в жизни и развитие интереса к ней.

Для решения поставленной цели, мы выполнили следующие задачи:

1. Познакомились с историей возникновения и развития тригонометрии.

2. Рассмотрели примеры практического воздействия тригонометрии в различных сферах деятельности

3. Показали на конкретных примерах возможности применения тригонометрии в жизни человека.

Изучение истории возникновения данной отрасли поможет вызвать интерес у школьников, сформировать верное мировоззрение и повысить общую культуру старшеклассника.

Данная работа будет полезна для учащихся старших классов, которые ещё не увидели всю красоту тригонометрии и не знакомы с областями её применения в окружающей жизни.

1. Алимов Ш.А.и др. «Алгебра и начала анализа» Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. «Алгебра и начала анализа» Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2013.

3. Глейзе р Г.И. История математики в школе: VII-VIII кл. — М.: Просвещение, 2012.

4. Глейзер Г.И. История математики в школе: IX-X кл. — М.: Просвещение, 2013.

5. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX-XX кл. – 2-е изд., испр. — М: Просвещение, 1985.

6. Рыбников К.А. История математики: Учебник. — М.: Изд-во МГУ, 1994. Олехник Задачи по алгебре, тригонометрии и элементарным функциям / Олехник, С.Н. и. — М.: Высшая школа, 2016. — 134 c.

7. Олехник, С.Н. Задачи по алгебре, тригонометрии и элементарным функциям / С.Н. Олехник. — М.: Высшая школа, 2013. — 645 c.

8. Потапов, М.К. Алгебра, тригонометрия и элементарные функции / М.К. Потапов. — М.: Высшая школа, 2014. — 586 c.

Видео:Тригонометрические уравнения sin2x=√2/2; cos x/3=-1/2Скачать

Тригонометрические уравнения sin2x=√2/2;  cos x/3=-1/2

Где встречаются тригонометрические уравнения экономике программировании геодезии черчении

Видео:Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравненСкачать

Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравнен

Тригонометрия

Тригонометрия в жизни

ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации ,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

· точного определения времени суток;

· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны ;

· нахождения географических координат текущего места;

· вычисления расстояния между городами с известными географическими координатами.

Гномон— древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось

Ситуация меняется , так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея «измерения углов» не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму

d B и измерим длину с отрезка АВ. Затем измерим, например

с помощью астролябии, углы A и B . Эти данные, т.е. c , a и b

позволяют решить треугольник АВС и найти искомое

С =180- а -b, sinC=sin(180-a-b)=sin(a+b)

Затем с помощью теоремы синусов находим d .

Видео:ОГЭ vs ЕГЭ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ОГЭ vs ЕГЭ 😉 #егэ #математика #профильныйегэ #shorts #огэ

«Тригонометрические уравнения»

Задание по алгебре для 10 класса — «Тригонометрические уравнения»

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Задание по алгебре для 10 класса — «Тригонометрические уравнения»

0 из 10 заданий окончено

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

Информация

Выполните задание онлайн олимпиады и узнайте результат.
Для зарегистрированных участников, результаты отправляются на электронную почту.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: 0 из 10

Вы набрали 0 из 0 баллов ( 0 )

Средний результат
Ваш результат
Средний результат
Ваш результат

Рубрики

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Поздравляем!
Вы отлично справились с заданием.
Ваш результат соответствует 1 месту.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Поздравляем!
Вы хорошо справились с заданием.
Ваш результат соответствует 2 месту.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Поздравляем!
Вы выполнили задние допустив незначительное количество ошибок.
Ваш результат соответствует 3 месту.

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Сделайте работу над ошибками.
Попробуйте пройти тестирование еще раз и добиться хорошего результата.
Ваш результат может стать значительно лучше.

Видео:#6. Как решать тригонометрические уравнения? 3 способа! (часть 2)Скачать

#6. Как решать тригонометрические уравнения? 3 способа! (часть 2)

Исследовательская работа по теме «Тригонометрические уравнения. Способы выбора корней»

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Школьный курс алгебры и начала анализа 10 — 11 классы . Исследовательская работа по теме «Тригонометрические уравнения. Способы выбора корней», выполненная ученицей 11 класса Толстых Владиславой под руководством учителя математики Исаковой Т.И. Работа может использована при подготовке к ЕГЭ

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Скачать:

ВложениеРазмер
trigonometricheskie_uravneniya_sposoby_otbora_korney_22.03.17.doc630 КБ
trigonometricheskie_uravneniya_sposoby_otbora_korney.ppt799 КБ

Видео:ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯСкачать

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

Предварительный просмотр:

Региональная научно-практическая конференция

для молодежи и школьников «Шаг в будущее, Сибирь!»

Способы выбора корней

Толстых Владислава, ученица 11класса

Муниципальное казённое обще – образовательное учреждение Средне –Муйская средняя общеобразовательная школа Усть — Удинского района Иркутской области

Исакова Тамара Ивановна, учитель математики, высшей квалификационной категории. МКОУ Средне – Муйская СОШ Усть Удинского района Иркутской области

с. Средняя Муя, 2017год

Из истории происхождения

Типы тригонометрических уравнений

Способы отбора корней в тригонометрических уравнениях

Практические применения тригонометрии

Актуальность темы: Почему я выбрала тему «Тригонометрические уравнения»?

  • тригонометрические уравнения и неравенства встречаются в курсе алгебры и начала анализа, в разделе ЕГЭ по математике
  • тригонометрия встречается в таких науках, как физика, биологии
  • не последнюю роль играют и в медицине, и, что самое интересное, без них не обошлось даже в музыке и архитектуре.

Почему я выбрала тему «Тригонометрические уравнения»?

Тригонометрические уравнения – это одна из сложнейших тем математики, которая выходит на Единый Государственный Экзамен. Очень многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и выбирать корни, принадлежащие отрезку. Немаловажно знать, тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Каждого изучающего математику, интересует как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

  • узнать как можно больше применений науки тригонометрия в повседневной практике
  • изучить способы решения тригонометрических уравнений и способы выбора корней, принадлежащих промежутку
  • расширить знания о применении тригонометрических уравнений в разных сферах жизни человека
  • познакомиться с историей возникновения тригонометрических уравнений
  • научиться решать тригонометрические уравнения
  • уметь выбирать корни уравнения, принадлежащие промежутку
  • сделать подборку задач из ЕГЭ
  • поработать в Microsoft Word, Microsoft PowerPoint
  • получить опыт публичного выступления
  • ресурсы Интернет – сайтов, содержащих тригонометрические уравнения
  • изучила материал энциклопедий и справочников
  • просмотрела и выбрала задания из Демо — вариантов ЕГЭ разных лет по математике
  • изучила способы решения тригонометрических уравнений и выбор корней уравнения принадлежащих отрезку

Методы и приемы :

  • поиск информации в источниках, справочниках
  • работа с ресурсами Internet
  • обработка и анализ информации
  • умение работать в Microsoft PowerPoint и Microsoft Word

Гипотеза : Существует две гипотезы:

  • человек не сможет обойтись в жизни без тригонометрических уравнений
  • тригонометрические уравнения не нужны человеку в жизни.
  • я считаю, что в XXI веке все научные работы требующие исследования базируются на тригонометрических функциях, уравнениях. По этому знания о тригонометрических уравнениях нужны каждому. Решение тригонометрических уравнений встречается в ЕГЭ по математике

Выводы : Выполняя исследовательскую работу

  • не только рассмотрела все способы выбора корней тригонометрического уравнения принадлежащего отрезку, но и ликвидировала свои проблемы по данной теме. Для меня это очень важно при сдаче ЕГЭ по математике
  • выяснила какое значение имеют тригонометрические уравнения в жизни человека и как они работают в стране
  • доказала, что в современном мире прожить без знаний тригонометрический уравнений невозможно. Чтобы быть хорошим специалистом, уметь разбираться в большом потоке информации, необходимо знать тригонометрические уравнения.
  • изучение столь важной и интересной темы дает положительную мотивацию для самообразования.

1. Из истории происхождения

Слово тригонометрия составилось из двух греческих слов: τρίγονον (тригонон-треугольник) и и μετρειν (метрейн — измерять ) в буквальном переводе означает измерение треугольников .

Именно эта задача- измерение треугольников или, как принято теперь говорить, решение треугольников, т.е. определение всех сторон и углов треугольника по трем его известным элементам (стороне и двум углам, двум сторонам и углу или трем сторонам)- с древнейших времен составляла основу практических приложений тригонометрии.

Как и всякая другая наука, тригонометрия выросла из человеческой практики, в процессе решения конкретных практических задач. Первые этапы развития тригонометрии тесно связаны с развитием астрономии. Большое влияние на развитие астрономии и тесно связанной с ней тригонометрии оказали потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил. Значительную роль в развитии тригонометрии сыграла потребность в составлении географических карт и тесно связанная с этим необходимость правильного определения больших расстояний на земной поверхности.

Основополагающее значение для развития тригонометрии в эпоху ее зарождения имели работы древнегреческого астронома Гиппарха (середина II века до н.э.). Тригонометрия как наука, в современном смысле этого слова не было не только у Гиппарха, но и у других ученых древности, так как они еще не имели понятия о функциях углов и даже не ставили в общем виде вопроса о зависимости между углами и сторонами треугольника. Но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. При этом основным средством получения нужных результатов было умение вычислять длины круговых хорд на основании известных соотношений между сторонами правильных трех-, четырех-, пяти- и десятиугольника и радиусом описанного круга.

Гиппарх составил первые таблицы хорд, т.е. таблицы, выражающие длину хорды для различных центральных углов в круге постоянного радиуса. Это были, по существу, таблицы двойных синусов половины центрального угла. Впрочем, оригинальные таблицы Гиппарха (как и почти все им написанное) до нас не дошли, и мы можем составить себе о них представление главным образом по сочинению «Великое построение» или ( в арабском переводе) « Альмагест» знаменитого астронома Клавдия Птолемея , жившего в середине II века н.э.

Птолемей делил окружность на 360 градусов, а диаметр- на 120 частей. Он считал радиус равным 60 частям(60 ′′ ). Каждую из частей он делил на 60 ′ , каждую минуту на 60 ′′ , секунду на 60 терций (60 ′′′ ) и т.д., применяя указанное деление, Птолемей выражал сторону правильного вписанного шестиугольника или хорду, стягивающую дугу в 60 ° в виде 60 частей радиуса (60 ч ), а сторону вписанного квадрата или хорду в 90 ° приравнивал числу 84 ч 51 ′ 10 ″ .Хорду в 120 ° — сторону вписанного равностороннего треугольника- он выражал числом 103 ч 55 ′ 23 ″ и т.д. Для прямоугольного треугольника с гипотенузой, равной диаметру круга, он записывал на основании теоремы Пифагора: (хорда α ) 2 +(хорда | 180- α| ) 2 =(диаметру) 2 , что соответствует современной формуле sin 2 α +cos 2 α =1.

«Альмагест» содержит таблицу хорд через полградуса от 0 ° до 180 ° , которая с нашей современной точки зрения представляет таблицу синусов для углов от 0 ° до 90 ° через каждые четверть градуса.

В основе всех тригонометрических вычислений у греков лежала известная еще Гиппарху теорема Птолемея: «прямоугольник, построенный на диагоналях вписанного в круг четырехугольника, равен сумме прямоугольников, построенных на противолежащих сторонах» (произведение диагоналей равно сумме произведений противоположных сторон). Пользуясь этой теоремой, греки умели (с помощью теоремы Пифагора) по хордам двух углов вычислить хорду суммы (или хорду разности) этих углов или хорду половины данного угла, т.е. умели получать результаты, которые мы получаем теперь по формулам синуса суммы (или разности) двух углов или половины угла.

Новые шаги в развитии тригонометрии связаны с развитием математической культуры народов Индии, Средней Азии и Европы (V-XII) .

Важный шаг вперед в период с V по XII век был сделан индусами, которые в отличие от греков стали рассматривать и употреблять в вычислениях уже не целую хорду ММ ′ ( см. чертеж) соответствующего центрального угла, а только ее половину МР, т. е. то, что мы теперь называем линией синуса α — половины центрального угла.

Наряду с синусом индусы ввели в тригонометрию косинус, точнее говоря, стали употреблять в своих вычислениях линию косинуса. (термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90 ° . «Синус дополнения» или ( по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus).

Им были известны также соотношения cos α =sin(90 ° — α ) и sin 2 α +cos 2 α =r 2 , а также формулы для синуса суммы и разности двух углов.

Следующий этап в развитии тригонометрии связан со странами

Средней Азии, Ближнего Востока, Закавказья(VII-XV в.)

Развиваясь в тесной связи с астрономией и географией,- среднеазиатская математика имела ярко выраженный «вычислительный характер» и была направлена на разрешение прикладных задач измерительной геометрии и тригонометрии, причем тригонометрия сформировалась в особую математическую дисциплину в значительной мере именно в трудах среднеазиатских ученых. Из числа сделанных ими важнейших успехов следует в первую очередь отметить введение всех шести тригонометрических линий: синуса, косинуса, тангенса, котангенса, секанса и косеканса, из которых лишь первые две были известны грекам и индусам.

Решая задачу об определении высоты Солнца S по тени b вертикально стоящего шеста a (см чертеж), сирийский астроном ал-Баттани (Хв.)пришел к выводу, что острый угол ϕ в прямоугольном треугольнике определяется отношением одного катета к другому, и вычислил небольшую таблицу котангенсов через 1 ° . Точнее говоря, он вычислил длину тени b=a ⋅ =a ⋅ ctg ϕ шеста определенной длины (а=12) для ϕ =1 ° ,2 ° ,3 ° ……

Абу-ль-Вафа из Хоросана, живший в Х веке (940-998), составил аналогичную «таблицу тангенсов», т.е. вычислил длину тени b=a ⋅ =a ⋅ tg ϕ , отбрасываемой горизонтальным шестом определенной длины ( а=60) на вертикальную стену (см. чертеж).

Следует отметить, что сами термины «тангенс» (в буквальном переводе- «касающийся») и «котангенс» произошли из латинского языка и появились в Европе значительно позднее (XVI-XVIIвв.). Среднеазиатские же ученые называли соответствующие линии «тенями»: котангенс- «первой тенью», тангенс- «второй тенью».

Абу-ль-Вафа дал совершенно точное геометрическое определение линии тангенса в тригонометрическом круге и присоединил к линиям тангенса и котангенса линии секанса и косеканса. Он же выразил (словесно) алгебраические зависимости между всеми тригонометрическими функциями и, в частности, для случая, когда радиус круга равен единице. Этот чрезвычайно важный случай был рассмотрен европейскими учеными на 300 лет позднее. Наконец, Абу-ль-Вафа составил таблицу синусов через каждые 10 ′ .

В трудах среднеазиатских ученых тригонометрия превратилась из науки, обслуживающей астрономию, в особую математическую дисциплину, представляющую самостоятельный интерес.

Тригонометрия отделяется от астрономии и становится самостоятельной наукой. Это отделение обычно связывают с именем азербайджанского математика Насирэддина Туси (1201-1274).

Впервые в европейской науке стройное изложение тригонометрии дано в книге «О треугольниках разных родов», написанной Иоганном Мюллером , более известным в математике под именем Региомонтана(1436-1476). Он обобщает в ней методы решения прямоугольных треугольников и дает таблицы синусов с точностью до 0,0000001. При этом замечательно то, что он полагал радиус круга равным 10 000 000 или 10 000, т.е. выразил значения тригонометрических функций в десятичных дробях, перейдя фактически от шестидесятиричной системы счисления к десятичной.

Английский ученый XIV века Брадвардин (1290-1349) первый в Европе ввел в тригонометрические вычисления котангенс под названием «прямой тени» и тангенс под названием «обратной тени».

На пороге XVIIв. В развитии тригонометрии намечается новое направление- аналитическое. Если до этого главной целью тригонометрии считалось решение треугольников, вычисление элементов геометрических фигур и учение о тригонометрических функциях строилось на геометрической основе, то в XVII-XIX вв. тригонометрия постепенно становится одной из глав математического анализа. О свойствах периодичности тригонометрических функций знал еще Виет , первые математические исследования которого относились к тригонометрии.

Швейцарский математик Иоганн Бернулли (1642-1727) уже применял символы тригонометрических функций.

В первой половине XIXв. французский ученый Ж.Фурье доказал, что всякое периодическое движение может быть представлено в виде суммы простых гармонических колебаний.

Огромное значение в истории тригонометрии имело творчество знаменитого петербургского академика Леонарда Эйлера (1707-1783), он придал всей тригонометрии современный вид.

В своем труде «Введение в анализ» (1748 г.) Эйлер разработал тригонометрию как науку о тригонометрических функциях, дал ей аналитическое изложение, выведя всю совокупность тригонометрических формул из немногих основных формул.

Эйлеру принадлежит окончательное решение вопроса о знаках тригонометрических функций во всех четвертях круга, вывод формул приведения для общих случаев.

Введя в математику новые функции- тригонометрические, стало целесообразным поставить вопрос о разложении этих функций в бесконечный ряд. Оказывается, такие разложения возможны:

Эти ряды позволяют значительно облегчить составление таблиц тригонометрических величин и для нахождения их с любой степени точности.

Аналитическое построение теории тригонометрических функций, начатое Эйлером, было завершено в работах Н.И.Лобачевского, Гаусса, Коши, Фурье и других.

«Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций…Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».

В наше время тригонометрия больше не рассматривается как самостоятельная ветвь математики. Важнейшая ее часть-учение о тригонометрических функциях -является частью более общего, построенного с единой точки зрения учения о функциях, изучаемых в математическом анализе; другая же часть- решение треугольников -рассматривается как глава геометрии.

II. Типы тригонометрических уравнений:

К определению тригонометрического уравнения различные авторы учебных пособий подходят по-разному. Мы назовем тригонометрическим уравнениям равенство тригонометрических выражений, содержащих неизвестное (переменную) только под знаком тригонометрических функций. Уравнения cos 3x=sin; tg(π/2 – 11x) – tg ((3/2)π-5x) = 0; sin 3x+sin 5x = sin 4x и т.д. суть тригонометрические уравнения. Уравнения sin x=(1/2)x; cos 2x = — (1/2)x + (1/3); tg x = x и т.д. не являются тригонометрическими, они относятся к типу трансцендентных уравнений и, как правило, решаются приближенно или графически. Может случиться так, что не является тригонометрическим согласно определению, однако оно может быть сведено к тригонометрическому. Например, 2(x-6) cos 2x=x-6. Мы видим, что x-6 не содержится под знаком тригонометрических функций, однако оно решается аналогически: (x-6) × (2 cos 2x -1)=0, откуда x=6 или cos 2x = (1/2), x=±(π/6)+nπ, nϵZ. Решить тригонометрическое уравнение – значит найти все его корни – все значения неизвестного, удовлетворяющие уравнению. При решении тригонометрических уравнений мы будем пользоваться известными тригонометрическими формулами. Простейшими тригонометрическими уравнениями являются: sin x=′a и cos x=a, где ׀а׀≤1, tg x=a и ctg x=a, где aϵR. Для решения различных видов тригонометрических уравнений необходимо уметь решать простейшие тригонометрические уравнения. Перейдем к рассмотрению решения тригонометрических уравнений различных видов.

1 тип — простейшие тригонометрические уравнения:

а) уравнения вида sin x=a

Уравнение вида sin x=a может иметь решении только при ׀а׀≤1. Известно, что решение этого уравнения находят по обобщенной формуле: x=(-1) n arcsin a+ nπ(1), где nϵZ и (-π/2)≤ arcsin a≤( π/2).

Решение. (2/3)x=(-1) n arcsin(1/2)+nπ, (2/3)x=(-1) n ( π/6) +nπ, x=(-1) n (π/4) +(3/2)nπ, nϵZ.

Ответ: x=(-1) n (π/4) +(3/2)nπ, nϵZ.

Решение. (3π/√x)= (-1) n+1 arcsin (√3/2) +nπ, (3π/√x)= (-1) n+1 (π/3) +nπ, (3/√x)= (-1) n+1 (1/3)+π, √x=(3/(-1) n+1 (1/3)+π) или √x=(9/3n+(-1) n+1 ), x=(81/((-1) n+1 (1/3)+π) 2 ), nϵN. Ответ: x=(81/((-1) n+1 (1/3)+π) 2 ), nϵN.

б) Уравнение вида cos x=a

Уравнение вида cos x=a может иметь решении только при ׀а׀≤1. Известно, что решение этого уравнения находят по обобщенной формуле: x= ±arccos a+ 2nπ, где nϵZ и 0≤ arccos a≤ π

Полезно знать, что arccos (-a) = π- arccos a.

Решение. (5/6)x= ±arccos(√3/2)+ 2nπ, (5/6)x=±( π/6) +2nπ, x=±( π/5) +(12/5)nπ, nϵZ.

Ответ: x=±(π/5) +(12/5)nπ, nϵZ.

Решение. cos(3x-2)=(√2/2), 3x-2 = = ±arccos(√2/2)+ 2nπ, 3x-2=±( π/4) +2nπ, x=(2/3)±(π/5)+ (2/3)nπ, nϵZ. Ответ: x=(2/3)±(π/5)+ (2/3)nπ, nϵZ.

в) Уравнение вида tg x=a, aϵR

Известно, что решение данного уравнения находят по обобщенной формуле: x=arctg a+ nπ, где nϵZ. Полезно помнить, что arctg (-a)= — arctg a.

Решение. 2x=arctg √3+nπ, 2x=( π/3)+ nπ, 2x=(3n+1)( π/3),x=(3n+1)( π/6), nϵZ.

Ответ: x=(3n+1)( π/6), nϵZ.

Решение. (2/3x)= arctg(-1)+ nπ, (2/3x)= -arctg1+ nπ, (2/3x)= (-π/4)+ nπ, (2/3x)= (-π/4)+ nπ, (2/3x)= (4π—1)(π/4), (1/x)= (4π—1)(3π/8), x=(8/(4π—1)3π), nϵZ.

Ответ: x=(8/(4π—1)3π), nϵZ.

г) уравнение вида ctg x=a, aϵ R

Известно, что решение данного уравнения находят по обобщенной формуле: x=arcctg a+ nπ,(5), где nϵZ и 0

При решении простейших уравнений можно использовать тригонометрический круг. Я считаю, что данный способ более рациональный, чем решение тригонометрических уравнений с помощью формулы.

2 тип-уравнения, сводимые к алгебраическим

Это уравнения, сводимые к одной и той же функции относительно одного и того же неизвестного выражения, выходящего только под знак функции.

Тригонометрические уравнение a sin 2 x+ b sin x+c=0, a cos 3 x+ b cos x+c=0; a tg 4 3x+ b tg 2 3x+c=0, a ctg 2 2x+ b ctg 2x+c=0 уже сведены к алгебраическим. Действительно, положив в них соответственно sin x=y, cos x=z, tg 3x=t, ctg 2x= u, получим алгебраические уравнения: ay 2 + by+c=0, az 2 + bz+c=0, at 4 + bt 2 +c=0; au 2 + bu+c=0. Решив каждое из них, найдем sin x, cos x, tg 3x, ctg 2x.

Уравнения a sin 2 x+ b cos x+c=0, a cos 2 x+ b sin x+c=0, a tg x+ b ctg x =0 не являются по виду алгебраическими, но их можно свести к алгебраическим: a cos 2 x- b cos x-(a+c)=0, a sin 2 x- b sin x-(a+c)=0 и a tg x +(b/tg x)=0.

При решении уравнений сводимых к алгебраическим необходимо знать формулы:

1) sin x+cos x=1; 2)tg a =(sin a/cos a); 3) ctg a=( cos a/ sin a); 4) ctg a=(1/tg a)

5)1+tg 2 a=(1/cos 2 a); 6)1+ctg 2 a=(1/sin 2 a); 7) 1+cos 2a=2cos 2 a; 8) 1-cos 2a=2sin 2 a;

9)tg2a=(2 tga/1-tg 2 a); 10) sin2a=(2 tga/1+tg 2 a); 11)cos 2a=(1-tg 2 a/1+tg 2 a);

12)sin2a=2sin a cos a; 13) cos2a= cos 2 a-sin 2 a, или cos2a= 2cos 2 a-1, или cos2a= 1-2sin 2 a;

14) Формулы приведения;

  1. Ведём замену а.
  2. Находим корни квадратного уравнения.
  3. Возвращаемся к замене и решаем простейшее тригонометрическое уравнение.
  4. Записываем ответ.

Пример1: Решить уравнение2 sin 2 x + sin x – 1 = 0;

2 sin 2 x + sin x – 1 = 0;

sin x = а, ׀ а ׀ ≤ 1;

D = 9; а 1 = — 1; а 2 = 1 / 2 ;

sin x = -1; sin x = 1 / 2 ;

х 1 = — п / 2 + 2пn, n € N. x 2 = (- 1) k п / 6 + пk, k€ N.

Ответ: — п / 2 + 2пn; (- 1) k п / 6 + пk, n, k € N.

Приме 2: Решить уравнение

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

3 тип-однородные уравнения

Уравнения a sin x+ b cos x=0; a sin 2 x+b sin x cos x+c cos 2 x=0; a sin 3 x+b sin 2 x cos x+ c sin x cos 2 x+ d cos 3 x=0 и т.д. называют однородными относительно sin x и cos x. Сумма показателей степеней при sin x и cos x у всех членов такого уравнения одинакова. Эта сумма называется степенью однородного уравнения. Рассмотренные уравнения имеют соответственно первую, вторую и третью степень. Делением на cos k x, где k-степень однородного уравнения, уравнение приводится к алгебраическому относительно функции tg x.

Рассмотрим уравнение a sin 2 x+b sin x cos x+c cos 2 x=0(1). Разделим уравнение(1) на cos 2 x, получим: a tg 2 x+ b tg x+c=0(2).При a≠0 (1) и (2) равносильны, так как cos x≠0. Если же cos x=0, то из уравнения(1) видно, что и sin x =0, что невозможно, так как теряет смысл тождество .

При решении однородных уравнений применяем схему:

  1. Разделим обе части уравнения на cos 2 x ≠ 0.
  2. Ведём замену а.
  3. Находим корни квадратного уравнения.
  4. Возвращаемся к замене и решаем простейшее тригонометрическое уравнение.
  5. Записываем ответ.

Пример1. Решить уравнение: 3 sin2 x + sin x • cos x = 2 cos2 x;

3 sin 2 x + sin x · cos x = 2 cos 2 x;

3 tq 2 x + tq x = 2; х ≠ п / 2 + пn, n € N.

D = 25; а 1 = — 1; а 2 = 2 / 3 ;

tq x = — 1; tq x = 2 / 3 ;

х 1 = — п / 4 + пn, n € N. x 2 = arctq 2 / 3 + пn, n € N.

Ответ: — п / 4 + пn, arctq 2 / 3 + пn, n € N.

Пример 2. 5 sin x — 2 cos x = 0

Поделим обе части уравнения cos x (или на sin x). Предварительно докажем,

что cos x 0 (или sin x 0). (Пусть cos x = 0, тогда 5 sin x — 2 • 0 = 0, т.е. sin x = 0; но этого не может быть, так как sin 2 x + cos 2 x = 1).

Значит, можно делить на cos x:

5 sin x /cos x — 2 cos x / cos x = 0 / cos x. Получим уравнение

x = arctg 2/5 + n, n = Z.

Ответ: x = arctg 2/5 + n, n = Z.

Аналогично решаются однородные уравнения вида a sin 2 x + b sin x cos x + c cos 2 x = 0, их решение начинается с того, что обе части уравнения делятся на cos 2 x (или на sin 2 x).

Пример 3. 12 sin 2 x + 3 sin 2x — 2 cos 2 x = 2.

Данное уравнение не является однородным, но его можно преобразовать в однородное, заменив 3 sin 2x на 6 sin x cos x и число 2 на 2sin 2 x + 2cos 2 x.

Приведя подобные члены, получим уравнение

10sin 2 x + 6sin x cos x — 4 cos 2 x = 0.

(Пусть cos x = 0, тогда 10sin 2 x = 0, чего не может быть, т.к. sin 2 x + cos 2 x = 1, значит, cos x 0).

Разделим обе части уравнения на cos 2 x.

10 tg 2 x +6 tg x — 4 = 0,

tg x = -1 или tg x = 2/5,

x = — /4 + n, n = Z, x = arctg 2/5 + k, k = Z.

Ответ: x 1 = — /4 + n, n = Z, x 2 = arctg 2/5 + k, k = Z.

4 тип- уравнения, решаемые разложением на множители:

При решении уравнений методом разложения нужно пользоваться всеми известными способами разложения на множители алгебраических выражений. Это вынесение за скобки общего множителя, группировка, применение формул сокращенного умножения и деления и искусственные приемы. Необходимо так же знать формулы: 1) sin x+cos x=1; 2)tg a =(sin a/cos a); 3) ctg a=( cos a/ sin a); 4) ctg a=(1/tg a)

5)1+tg 2 a=(1/cos 2 a); 6)1+ctg 2 a=(1/sin 2 a); 7) 1+cos 2a=2cos 2 a; 8) 1-cos 2a=2sin 2 a;

9)tg2a=(2 tga/1-tg 2 a); 10) sin2a=(2 tga/1+tg 2 a); 11)cos 2a=(1-tg 2 a/1+tg 2 a);

12)sin2a=2sin a cos a; 13) cos2a= cos 2 a-sin 2 a, или cos2a= 2cos 2 a-1, или cos2a= 1-2sin 2 a;

14)tg(a±b) = (tg a±tg b)/(1±tg a tg b); 15)sin 3a=3sin a – 4sin 3 a; 16)cos 3 a = 4 cos 3 a – 3 cos a;

Пример2. 2 sin 3 x — cos 2x — sin x = 0

Сгруппируем первый член с третьим, а cos 2x = cos 2 x — sin 2 x.

(2sin 3 x — sin x) – (cos 2 x — sin x) = 0,

Вынесем из выражения, стоящего в первой скобке sin x, а cos 2 x = 1 — sin x.

sin x (2sin 2 x – 1) – (1 — 2 sin 2 x) = 0,

sin x (2sin 2 x – 1) + (2 sin 2 x — 1) = 0,

(2 sin 2 x — 1) • ( sin x + 1) = 0.

2 sin 2 x – 1 = 0

Ответ: x 1 = ± /4 + n, n = Z, x 2 = — /2 +2 k, k = Z.

5 тип-уравнения, решаемые с помощью условия равенства одноименных тригонометрических функций

Многие тригонометрические уравнения могут быть приведены к равенству одноименных тригонометрических функций. Такие уравнения решаются на основании условий равенства одноименных тригонометрических функций, т.е. тех условий, которым должны удовлетворять два угла: a и b, если a) sin a =sin b, б) cos a= cos b, в) tg a = tg b.

Теорема I. Для того чтобы синусы двух углов были равны, необходимо и достаточно выполнения одного из следующих условий: разность этих углов должна равняться π, умноженному на четное число, или сумма этих углов должна равняться π, умноженная на нечетное число,

Теорема II . Для того чтобы косинусы двух углов были равны, необходимо и достаточно выполнения одного из следующих условий: разность(сумма) этих углов должна равняться произведению π на четное число.

Теорема II . Для того чтобы тангенсы двух углов были равны, необходимо и достаточно выполнения одного из следующих условий: тангенс каждого из данных углов существует и разность этих углов равна числу π, умноженному на целое число.

6 тип- уравнения, решаемые с помощью формул сложения тригонометрических функций:

Для решения данного типа применяются формулы преобразования суммы тригонометрических функций в произведение:

Sin a + sin b= 2 sin((a+b)/2) cos((a-b)/2);

Sin a — sin b= 2 sin((a-b)/2) cos((a+b)/2);

cos a + cos b= 2 cos ((a+b)/2) cos((a-b)/2);

cos a — cos b= 2 sin ((a+b)/2) sin ((b-a)/2) при b>a;

cos a — cos b= 2 sin ((a+b)/2) sin ((a-b)/2) при b

tg a ± tg b = (sin(a+b)/ cos a cos b);

ctg a + ctg b = (sin(a+b)/ sin a sin b);

ctg a — ctg b = (sin(b-a)/ sin a sin b);

В некоторых примерах прийдется применять формулы:

sin (a±b)= sin a cos b± cos a sin b;

cos (a±b)= cos a cos b± sin a sin b;

7 тип- уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму

Формулы сложения углов и разложения произведения тригонометрических функций в сумму:

sin (a±b)= sin a cos b± cos a sin b;

cos (a±b)= cos a cos b± sin a sin b;

tg(a±b) = (tg a±tg b)/(1±tg a tg b);

sin a cos b=(1/2)(sin(a+b)+ sin(a-b));

cos a cos b=(1/2)( cos (a+b)+ cos (a-b));

sin a sin b=(1/2)( cos (a-b)- cos (a+b));

8 тип-уравнения, решаемые с помощью формул понижения степени

Формулы понижения степени:

Sin 2 t=((1- cos 2t)/2)

Cos 2 t=((1+cos 2t)/2)

9 тип- уравнения вида a sin x+b cos x= c

В уравнении a sin x+b cos x= c a, b и c- любые действительные числа. Если а=b=0, а с≠0, то уравнение теряет слысл; если же а=b=с=0, то x- любое действительное число, т.е. уравнение обращается в тождество. Например, √3 sin x + cos x=1. Разделив обе части уравнения на 2, получим (√3/2) sin x + (1/2)cos x=(1/2), т.е. sin(x+(π/6))=1/2 или cos(x-(π/6))= 1/2. Уравнение sin x+ cos x=1 можно решать по крайней мере четырьмя способами. Например, разделив обе части уравнения на √2, получив: (1/√2) sin x+(1/√2) cos x= (1/√2), sin(x+(π/4))= (2/√2) и т.д.

Рассмотрим уравнение a sin x+b cos x= c, у которого произвольные коэффициенты. Такие уравнения решаются разными способами.

1-й способ решения уравнения a sin x+b cos x= c – введение вспомогательного угла.

Мы знаем, что если a 2 +b 2 =1, то существует такой угол как φ, а= cos φ, b= sin φ или наоборот. Для решения уравнения a sin x+b cos x= c вынесем за скобки множителем выражение √( a 2 +b 2 ). Получим: √( a 2 +b 2 )((a/√( a 2 +b 2 )) sin x+(b/√( a 2 +b 2 )) cos x)=c. Поскольку (((a/√( a 2 +b 2 )) sin x) 2 +((b/√( a 2 +b 2 )) cos x)) 2 =1, то первое число (a/√( a 2 +b 2 )) можно принять за косинус некоторого угла φ, а второе (b/√( a 2 +b 2 )) — за синус того же угла φ, т.е. (a/√( a 2 +b 2 ))= cos φ, (b/√( a 2 +b 2 )) = sin φ. В таком случае уравнение примет вид: √( a 2 +b 2 )( cos φ sin x+ sin φ cos x)= c или √( a 2 +b 2 ) sin(φ+x), откуда sin(φ+x)= (с/√( a 2 +b 2 )). Это уравнение имеет решение, если a 2 +b 2 =с 2 , тогда φ+x=(-1) n arcsin (с/√( a 2 +b 2 )) +nπ, x=(-1) n arcsin (с/√( a 2 +b 2 )) +nπ- φ, nϵZ. Угол φ находится из равенства tg φ =( sin φ/ cos φ) =(b/a), откуда φ=arctg(b/a). Ответ: x=(-1) n arcsin (с/√( a 2 +b 2 )) +nπ- arctg(b/a), nϵZ.

Пример: Решим уравнение 12cosx — 5sinx = -13

Решение: разделим обе части уравнения на , получим

Одним из решений системы cos = 12/13, sin = 5/13 является =arccos(12/13). Учитывая это, запишем уравнение в виде:
и, применив формулу для косинуса суммы аргументов, получим

2-й способ решения уравнения a sin x+b cos x= c – метод рационализации.

Известно, что если α≠π(2n+1), nϵZ, то sin α, cos α, tg α выражаются рационально через tg(α/2), т.е. sin α=( 2tg(α/2)/1+ tg 2 (α/2)), cos α=(1- tg 2 (α/2)/ 1+ tg 2 (α/2)), и tg α=( 2tg(α/2)/1- tg 2 (α/2)).

Метод рационализации заключается в следующем: вводится вспомогательное неизвестное так, чтобы после подстановки получилось рациональное уравнение относительно этого вспомогательного неизвестного. Рассмотрим уравнение a sin x+b cos x= c, которое можно переписать так: a( 2tg(α/2)/1+ tg 2 (α/2))+b(1- tg 2 (α/2)/ 1+ tg 2 (α/2))=c. Положим tg(x/2)=t, тогда получим: a( 2t/1+ t 2 )+b(1- t 2 / 1+ t 2 )=c. Это уравнение – рациональное относительно t. Умножим обе части уравнения на 1+ t 2 ≠0 при tϵR, получим: (b+c)t 2 -2at+(c-b)=0(2), (D/4)=a 2 -(c-b)(c+b)= a 2 +b 2 -с 2 . Полагаем, что a+b≠0 или с≠-b, тогда t 1.2 =((a±√( a 2 +b 2 -с 2 )/(b+c))(3). Значение t- действительные, если a 2 +b 2 ≥с 2 .

Если уравнение(2) с=-b, то оно обратится в уравнение первой степени: -2at-2b=0, t=-(b/a), т.е. tg(x/2)=- (b/a), x=-2 arctg(b/a)+2nπ. Выражение для вспомогательного неизвестного t= tg(x/2) теряет смысл при (x/2)= (π/2)+nπ, т.е. x=(2n+1)π. Решения уравнения(1) вида x=(2n+1)π (если такие решения существуют) могут быть потеряны. Подставив x=(2n+1)π в уравнение (1), получим a sin(2n+1)π +b cos(2n+1)π = c; a·0+b(-1)=c; с=-b. Том случае уравнение (1) имеет множество решений вида x=(2n+1)π, nϵZ.

  1. Если a 2 +b 2 2 , то уравнение (1) не имеет решений, так как уравнение (2) не имеет действительных корней.
  2. Если a 2 +b 2 ≥с 2 и с≠-b, то из уравнения(3) найдем: x=2arctg ((a±√( a 2 +b 2 -с 2 )/(b+c))+2nπ, nϵZ.
  3. Если с=-b, то уравнение (1) имеет два множества решений: x=(2n+1)π и x=-2 arctg++2nπ, nϵZ.

3-й способ решения уравнения a sin x+b cos x= c.

Можно возвести обе части уравнения в квадрат и привести его к однородному. Этот способ неприемлем, так как получаются посторонние корни.

4-й способ решения уравнения a sin x+b cos x= c.

  1. Запишем уравнение в виде: 2a sin(x/2) cos(x/2)+ b(cos 2 (x/2)- sin 2 (x/2))= c(cos 2 (x/2)+ sin 2 (x/2)), т.е. однородное уравнение:(с+b) sin 2 (x/2)- 2a sin(x/2) cos(x/2)+(c-b) cos 2 (x/2)=0 и т.

Универсальная тригонометрическая подстановка
Многие тригонометрические уравнения можно решить с помощью формул универсальной тригонометрической подстановки

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезиине определен в точках , поэтому в таких случаях нужно проверять, являются ли углы , корнями исходного уравнения.

Пример. Решим уравнение Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Решение:
Обращение к функции предполагает, что , то есть , .

По формулам универсальной тригонометрической подстановки исходное уравнение примет вид:

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии|: 2

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии, ;

IV. Способы отбора корней в тригонометрических уравнениях

1 способ: Арифметический(непосредственная подстановка корней в уравнение и имеющиеся ограничения)

2 способ. Геометрический способ(отбор корней тригонометрического уравнения на числовой прямой )

Отмечаю значения х при n,k,m=0 на числовой прямой и отрезок[-(3π/2); (π/2)] Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Измеряю период 2 π с помощью линейки(период функции, входящей в уравнение) и откладываю период с помощью линейки вправо, влево.

Определяю значения углов, принадлежащих данному отрезку.

3 способ: Геометрический способ(отбор корней тригонометрического уравнения на числовой окружности)

Выбор корней уравнения 2 sin2x+ sinx-1=0, принадлежащих отрезку[π/2; 2π] покажу на тригонометрическом круге Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

4 способ: Функционально-графический способ

В одной системе координат строим графики функции у=sin x и у=-1; у=sin x и у=1/2. Показываем отрезок [-3п/2;п/2]. Находим точки пересечения графиков функций у=sin x и у=-1; у=sin x и у=1/2, входящих в промежутке [-3п/2;п/2].

х= -7п/6; х= -п/2; х=п/6 являются решением уравнения

5 способ: Алгебраический (решение неравенства относительно неизвестного целочисленного параметра и вычисления корней)

Считаю лучшим способом — это алгебраический (решение неравенства относительно неизвестного целочисленного параметра и вычисления корней)

  1. Практическое применение тригонометрии

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела.

Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалеких звезд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Следует отметить применение тригонометрии в следующих областях: техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ), компьютерная томография, фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография, геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Приведу несколько примеров из практики, например: тригонометрия в медицине и биологии.

Модель биоритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.
Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем — на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах. Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея «измерения углов» не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

Выполняя исследовательскую работу, выяснила какое значение имеют тригонометрические уравнения в жизни человека и как они работают в стране. Рассмотрела способы выбора корней уравнения принадлежащих отрезку из раздела «ЕГЭ по математике» Доказала, что в современном мире прожить без знаний тригонометрический уравнений невозможно. Чтобы быть хорошими специалистами, уметь разбираться в большом потоке информации, необходимо знать тригонометрические уравнения. Изучение столь важной и интересной темы дает положительную мотивацию для самообразования

Видео:#2. Как решать тригонометрические уравнения? 3 способа!Скачать

#2. Как решать тригонометрические уравнения? 3 способа!

Урок-деловая игра «Тригонометрические уравнения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная

Видеолекции для
профессионалов

  • Свидетельства для портфолио
  • Вечный доступ за 120 рублей
  • 311 видеолекции для каждого

Где встречаются тригонометрические уравнения 1 экономика 2 программировании 3 геодезии

Авторская разработка урока Остапенко Т.И., учитель математики и физики МБОУ«Бехтеевская СОШ Корочанского района Белгородской области»

Урок – деловая игра в форме информационного поиска и оформления «информационных бланков».

Одно из главных условий успешного обучения ребенка – создание на уроках такой атмосферы, при которой он чувствует необходимость учебных занятий, с интересом воспринимает новые знания, ощущает себя участником (а не сторонним наблюдателем) происходящего: выполнения задания, обсуждения эксперимента, решения задачи. В этом случае ученик включается в учебный процесс по своему желанию, в результате чего действует свободно, осмысленно.

Из педагогических технологий, ориентированных на развитие личности, в своей работе применяю одну из групповых – деловую игру. Эта технология открывает ряд возможностей: максимально приближает обучение к реальным жизненным и производственным условиям; обеспечивает широкую самостоятельность учащихся, способствует развитию инициативы учеников, развивает коммуникативные навыки.

Повторительно-обобщающий урок в 10 классе. «Тригонометрические уравнения».

Цель урока: привести в систему изученные методы и приемы решения тригонометрических уравнений, расширить и углубить знания по изученной теме, показать прикладную направленность темы, установить причинно-следственные связи.

Эпиграф: Холодные числа, внешне сухие формулы математики полны внутренней красоты и жара сконцентрированной в них мысли. А.Д. Александров.

Форма проведения: информационный поиск.

— Решить уравнение, решить неравенство. С этим видом заданий мы сталкиваемся на уроках алгебры очень часто. Применяем формулы, радуемся, когда уравнение становится проще, наконец, видим желанное равенство, например, x = 2 и объявляем, что уравнение решено. Процесс решения уравнения напоминает прополку грядки человеком. Сначала он знакомится со всеми видами растений, которые растут на грядке. Затем, научившись их классифицировать, все нужное оставляет, а все лишнее выдергивает. Так и мы поступили с вами на всех предшествующих сегодняшнему уроку занятиях, и вот стоит перед нами дерево под названием «Тригонометрия» со своими могучими ветвями, из которых мы избираем сегодня одну «Тригонометрические уравнения». Я не сомневаюсь, что голова у вас ломится от мыслей, но эти мысли надо упорядочить, направить в русло полезной работы. Эту работу мы поведем в форме информационного поиска, приведем в систему изученные методы и приемы решения тригонометрических уравнений, расширим и углубим знания по теме, посмотрим прикладную направленность темы, а также выявим степень усвоения вами темы. Представьте себе, что все вы сейчас не ученики 10 класса, а штатные работники научной библиотеки – библиографы и получили задание подобрать материал по теме «Тригонометрические уравнения» и составить так называемые информационные бланки следующего содержания.

💥 Видео

Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. Тригонометрия

Тригонометрические уравнения 2 части ЕГЭСкачать

Тригонометрические уравнения 2 части ЕГЭ

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения | Борис Трушин

Тригонометрические уравнения с заменой и приведением к квадратному уравнению №2,3,4Скачать

Тригонометрические уравнения с заменой и приведением к квадратному уравнению №2,3,4

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой
Поделиться или сохранить к себе: