Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .
- Пример 1
- Шаг 1. Решение однородного уравнения
- Шаг 2. Вариация постоянных – замена постоянных функциями
- Решение системы уравнений
- Пример 2
- Шаг 1. Решение однородного уравнения
- Шаг 2. Вариация постоянных – замена постоянных функциями
- Решение системы уравнений
- Фундаментальная система решений дифференциальных уравнений 2 порядка
- Фундаментальная система решений дифференциальных уравнений 2 порядка
- Высшая математика
- 💥 Видео
Видео:Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать
Пример 1
Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)
Шаг 1. Решение однородного уравнения
Вначале мы решаем однородное дифференциальное уравнение:
(2)
Ищем решение в виде . Составляем характеристическое уравнение:
Это уравнение второго порядка.
Решаем квадратное уравнение:
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .
Шаг 2. Вариация постоянных – замена постоянных функциями
Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .
Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;
.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .
Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .
Решение системы уравнений
Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные:
;
.
Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:
.
По формулам Крамера находим:
;
.
Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .
Общее решение исходного уравнения:
;
.
Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Пример 2
Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)
Шаг 1. Решение однородного уравнения
Решаем однородное дифференциальное уравнение:
(9)
Ищем решение в виде . Составляем характеристическое уравнение:
Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .
Шаг 2. Вариация постоянных – замена постоянных функциями
Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .
Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .
Решение системы уравнений
Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.
Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:
.
По формулам Крамера находим:
;
.
Первый интеграл немного сложней (см. Интегрирование тригонометрических рациональных функций). Делаем подстановку :
.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.
Общее решение исходного уравнения:
.
Автор: Олег Одинцов . Опубликовано: 05-08-2013 Изменено: 19-06-2017
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Фундаментальная система решений дифференциальных уравнений 2 порядка
Если же это тождество выполняется лишь при , то указанные функции , , . называются линейно независимыми на отрезке .
Для случая двух функций критерий линейной независимости можно записать в более простом виде: Функции , будут линейно независимыми на отрезке , если их отношение на данном отрезке тождественно не равно постоянной:
В противном случае, при , эти функции будут линейно зависимыми .
Пусть n функций , , . имеют производные порядка. Определитель
называется определителем Вронского или вронскианом для указанной системы функций.
Теорема . Если система функций , , . линейна зависима на отрезке , то ее определитель Вронского тождественно равен нулю на этом отрезке.
Отсюда следует, что если определитель отличен от нуля хотя бы в одной точке отрезка , то функции , , . будут линейно независимыми. Это свойство определителя Вронского позволяет выяснить, являются ли найденные решения однородного дифференциального уравнения линейно независимыми.
Совокупность двух линейно независимых частных решений линейного однородного дифференциального уравнения второго порядка образует его фундаментальную систему решений .
Если , − фундаментальная система решений, то общее решение уравнения второго порядка представляется в виде
где , − произвольные постоянные.
Заметим, что по заданной фундаментальной системе решений , можно построить соответствующее однородное дифференциальное уравнение. Для случая второго порядка такое уравнение выражается через определитель в виде:
Итак, как указано выше, общее решение однородного дифференциального уравнения второго порядка является линейной комбинацией двух линейно независимых частных решений , этого уравнения.
Очевидно, что частные решения зависят от коэффициентов дифференциального уравнения. Формула Лиувилля-Остроградского устанавливает связь между вронскианом , построенном на базе частных решений , , и коэффициентом в дифференциальном уравнении.
Пусть − определитель Вронского решений , линейного однородного дифференциального уравнения 2-го порядка
К сожалению, общего метода отыскания частного решения не существует. Обычно это можно сделать путем подбора.
Если известно частное решение линейного однородного уравнения второго порядка, то его можно преобразовать к линейному уравнению первого порядка с помощью подстановки и последующей замены .
Другой способ понижения порядка основан на использовании формулы Лиувилля-Остроградского. Здесь также одно частное решение должно быть известно. Соответствующие примеры разобраны ниже.
где , и − непрерывные функции на отрезке .
Соответствующее однородное уравнение записывается в виде
Метод вариации постоянных (или метод Лагранжа) используется для построения общего решения неоднородного уравнения, когда известно общее решение ассоциированного с ним однородного уравнения.
Пусть общее решение однородного уравнения 2-го порядка выражается через фундаментальную систему решений и :
где C1, C2 − произвольные постоянные. Идея данного метода состоит в том, что вместо постоянных C1 и C2рассматриваются функции и , которые подбираются таким образом, чтобы решение удовлетворяло неоднородному уравнению.
Производные неизвестных функций и можно определить из системы уравнений
Применяя метод вариации параметров, важно помнить, что функция должна соответствовать дифференциальному уравнению, приведенному к стандартному виду, т.е. коэффициент перед старшей производной должен быть равен 1.
Далее, зная производные и , можно найти и сами функции и :
Тогда общее решение исходного неоднородного уравнения будет выражаться формулой
Теперь воспользуемся методом вариации постоянных и построим общее решение неоднородного уравнения. Будем рассматривать параметры C1 и C2 как функции от переменной x. Производные этих функций определяются из системы уравнений
В результате получаем общее решение неоднородного уравнения в виде
Видео:Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Фундаментальная система решений дифференциальных уравнений 2 порядка
Видео:15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Высшая математика
Рассмотрим линейное однородное дифференциальное уравнение
Фундаментальной системой решений однородного линейного дифференциального уравнения называется упорядоченный набор из n линейно независимых решений уравнения.
Доказано, что у однородного линейного дифференциального уравнения с непрерывными коэффициентами существует фундаментальная система решений.
И пусть функции y 1 ( x ), y 2( x ). y n( x ) — решения линейного однородного уравнения с начальными условиями:
💥 Видео
Решение системы дифференциальных уравнений методом ЭйлераСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
ФСР. Система однородных уравнений. Общее решениеСкачать
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Фундаментальная система решений для однородной системы линейных уравненийСкачать
ФСР. Система однородных уравнений 2Скачать
Фундаментальная система решений видео-урок!Скачать
Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5Скачать
Неоднородная система линейных уравненийСкачать
ФСР системы линейных уравнений. Алгоритм ГауссаСкачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
18. Фундаментальная система решенийСкачать
19. Общее решение линейного уравненияСкачать