Фундаментальная матрица системы дифференциальных уравнений

Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Фундаментальная матрица системы дифференциальных уравнений

Рассмотрим линейную однородную систему обыкновенных дифференциальных уравнений вида

Фундаментальная матрица системы дифференциальных уравнений

которая в векторной форме записывается в виде

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Матрица Φ , столбцами которой являются n линейно независимых на [ a , b ] решений Y1(x), Y2(x), . Yn(x) однородной линейной системы Y’ = A(x)Y называется фундаментальной матрицей решений системы :

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица решений однородной линейной системы Y’ = A(x)Y удовлетворяет матричному уравнению Φ’ = A(x)Φ.

Фундаментальная матрица системы дифференциальных уравнений

Напомним, что определитель Вронского линейно независимых на [ a , b ] решений Y1(x), Y2(x), . Yn(x) отличен от нуля на [ a , b ].

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Системы дифференциальных уравнений. Методы интегрирования. Метод исключения

Содержание:

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

По этой ссылке вы найдёте полный курс лекций по математике:

Основные понятия и определения К системе дифференциальных уравнений приводит уже простейшая задача динамики точки: даны силы, действующие на материальную точку; найти закон движения, т. е. найти функции х = x(t), у = y(t), z = z(t), выражающие зависимость координат движущейся точки от времени. Система, которая при этом получается, в общем случае имеет вид Здесь x, у, z — координаты движущейся точки, t — время, f,g,h — известные функции своих аргументов.

Система вида (1) называется канонической. Обращаясь к общему случаю системы т дифференциальных уравнений с т неизвестными функциями аргумента t, назовем канонической систему вида разрешенную относительно старших производных. Система уравнений первого порядка, разрешенных относительно производных от искомых функций, называется нормальной. Если принять за новые вспомогательные функции, то общую каноническую систему (2) можно заменить эквивалентной ей нормальной системой, состоящей из уравнений.

Поэтому достаточно рассматривать лишь нормальные системы. Например, одно уравнение является частным случаем канонической системы. Положив ^ = у, в силу исходного уравнения будем иметь В результате получаем нормальную систему уравнений СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕН Методы интегрирования Метод исключения Метод интегрируемых комбинаций Системы линейных дифференциальных уравнений Фундаментальная матрица Метод вариации постоянных Системы линейных дифференциальных уравнений с постоянными коэффициентами Матричный метод эквивалентную исходному уравнению. Определение 1.

Решением нормальной системы (3) на интервале (а, Ь) изменения аргумента t называется всякая система п функций ‘ дифференцируемых на интервале , обращающая уравнения системы (3) в тождества по t на интервале (а, Ь). Задача Коши для системы (3) формулируется так: найти решение (4) системы, удовлетворяющее при t = to начальным условиям Теорема 1 (существования и единственности решения задами Коим). Пусть имеем нормальную систему дифференциальных уравнений и пусть функции определены в некоторой (n + 1)-мерной области D изменения переменных t, Х, х 2, . хп.

Если существует окрестность ft тонки в которой функции ft непрерывны по совокупности аргументов и имеют ограниченные частные производные по переменным Х, х2, . хп, то найдется интервал to — Л0 изменения t, на котором существует единственное решение нормальной системы (3), удовлетворяющее начальным условиям Определение 2.

Система п функций зависящих от tun произвольных постоянных называется общим решением нормальной системы (3) в некоторой области П существования и единственности решения задачи Коши, если 1) при любых допустимых значениях система функций (6) обращает уравнения (3) в тождества, 2) в области П функции (6) решают любую задачу Коши. Решения, получающиеся из общего при конкретных значениях постоянных называются частными решениями.

Обратимся для наглядности к нормальной системе двух уравнений, Будем рассматривать систему значений t> Х, х2 как прямоугольные декартовы координаты точки трехмерного пространства, отнесенного к системе координат Otxх2. Решение системы (7), принимающее при t — to значения , определяет в пространстве некоторую линию, проходящую через точку )- Эта линия называется интегральной кривой нормальной системы (7). Задача Ко-ши для системы (7) получает следующую геометрическую формулировку: в пространстве переменных t> Х, х2 найти интегральную кривую, проходящую через данную точку Mo(to,x1,x2) (рис. 1).

Теорема 1 устанавливает существование и единственность такой кривой. Нормальной системе (7) и ее решению можно придать еще такое истолкование: будем независимую переменную t рассматривать как параметр, а решение системы — как параметрические уравнения кривой на плоскости хОх2. Эту плоскость переменных ХХ2 называют фазовой плоскостью. В фазовой плоскости решение (0 системы (7), принимающее при t = t0 начальные значения х°<, х2, изображается кривой АВ, проходящей через точку ). Эту кривую называют траекторией системы (фазовой траекторией).

Траектория системы (7) есть проекция интегральной кривой на фазовую плоскость.

По интегральной кривой фазовая траектория определяется однозначно, но не наоборот. § 2. Методы интегрирования систем дифференциальных уравнений 2.1. Метод исключения Один из методов интегрирования — метод исключения. Частным случаем канонической системы является одно уравнение n-го порядка, разрешенное относительно старшей производной, Введя новые функции уравнение следующей нормальной системой п уравнений: заменим это одно уравнение n-го порядка эквивалентно нормальной системе (1).

Можно утверждать и обратное, что, вообще говоря, нормальная система п уравнений первого порядка эквивалентна одному уравнению порядка п. На этом и основан метод исключения для интегрирования систем дифференциальных уравнений. Делается это так. Пусть имеем нормальную систему дифференциальных уравнений Продифференцируем первое из уравнений (2) по t. Имеем Заменяя в правой части произв или, короче, Уравнение (3) снова дифференцируем по t.

Принимая во внимание систему (2), получим или Продолжая этот процесс, найдем Предположим, что определитель (якобиан системы функций отличен от нуля при рассматриваемых значениях Тогда система уравнений, составленная из первого уравнения системы (2) и уравнений будет разрешима относительно неизвестных выразятся через Внося найденные выражения в уравнение получим одно уравнение n-го порядка Из самого способа его построения следует, что если ) есть решения системы (2), то функция X(t) будет решением уравнения (5).

Обратно, пусть — решение уравнения (5). Дифференцируя это решение по t, вычислим и подставим найденные значения как известные функции По предположению эту систему можно разрешить относительно , хп как функции от t. Можно показать, что так построенная система функций составляет решение системы дифференциальных уравнений (2). Пример. Требуется проинтегрировать систему Дифференцируя первое уравнение системы, имеем откуда, используя второе уравнение, получаем — линейное дифференциальное уравнение второго порядка с постоянными коэффициентами с одной неизвестной функцией.

Его общее решение имеет вид . В силу первого уравнения системы находим функцию . Найденные функции x(t), y(t), как легко проверить, при любых значениях С| и С2 удовлетворяют заданной системе. Функции можно представить в виде откуда видно, что интегральные кривые системы (6) — винтовые линии с шагом с общей осью х = у = 0, которая также является интегральной кривой (рис. 3). Исключая в формулах (7) параметр получаем уравнение так что фазовые траектории данной системы суть окружности с центром в начале координат — проекции винтовых линий на плоскость.

При Л=0 фазовая траектория состоит из одной точки , называемой точкой покоя системы. ». Может оказаться, что функции нельзя выразить через Тогда уравнения n-го порядка, эквивалентного исходной системе, мы не получим. Вот простой пример. Систему уравнений нельзя заменить эквивалентным уравнением второго порядка относительно х или х2. Эта система составлена из пары уравнений 1-го порядка, каждое из которых интегрируется независимо, что дает Метод интегрируемых комбинаций Интегрирование нормальных систем дифференциальных уравнений dXi иногда осуществляется методом интегрируемых комбинаций.

Возможно вам будут полезны данные страницы:

Интегрируемой комбинацией называется дифференциальное уравнение, являющееся следствием уравнений (8), но уже легко интегрирующееся. Пример.

Методы интегрирования

Метод исключения Метод интегрируемых комбинаций Системы линейных дифференциальных уравнений Фундаментальная матрица Метод вариации постоянных Системы линейных дифференциальных уравнений с постоянными коэффициентами Матричный метод 4 Складывая почленно данные уравнения, находим одну интегрируемую комбинацию:

Вычитая почленно из первого уравнения системы второе, получаем вторую интегрируемую комбинацию: откуда Мы нашли два конечных уравнения з которых легко определяется общее решение системы: Одна интегрируемая комбинация дает возможность получить одно уравнение связывающее независимую переменную t и неизвестные функции . Такое конечное уравнение называется первым интегралом системы (8). Иначе: первым интегралом системы дифференциальных уравнений (8) называется дифференцируемая функция не равная тождественно постоянной, но сохраняющая постоянное значение на любой интегральной кривой этой системы.

Если найдено п первых интегралов

системы (8) и все они независимы, т. е. якобиан системы функций отличен от нуля: Система дифференциальных уравнений называется линейной, если она линейна относительно неизвестных функций и их производных, входящих в уравнение. Система п линейных уравнений первого порядка, записанная в нормальной форме, имеет вид или, в матричной форме, Теорема 2.

Если все функции , непрерывны на отрезке , то в достаточно малой окрестности каждой точки ., хп),где ), выполнены условия теоремы существования и единственности решения задачи Кошии, следовательно, через каждую такую точку проходит единственная интегральная кривая системы (1).

Действительно, в таком случае правые части системы (1) непрерывны по совокупности аргументов t)x,x2>. ,хп и их частные производные по , ограничены, так как эти производные равны непрерывным на отрезке [a, Ь] коэффициентам Введем линейный оператор Тогда система (2) запишется в виде Если матрица F — нулевая, на интервале (а, 6), то система (2) называется линейной однородной и имеет вид Приведем некоторые теоремы, устанавливающие свойства решений линейных си- стем. Теорема 3. Если X(t) является решением линейной однородной системы где с — произвольная постоянная, является решением той же системы. Теорема 4.

Сумма двух решений однородной линейной системы уравнений является решением той же системы. Следствие. Линейная комбинация с произвольными постоянными коэффициентами с, решений линейной однородной системы дифференциальных уравнений является решением той же системы. Теорема 5. Если X(t) есть решение линейной неоднородной системы — решение соответствующей однородной системы то сумма будет решением неоднородной системы.

Действительно, по условию, Пользуясь свойством аддитивности оператора получаем Это означает, что сумма есть решение неоднородной системы уравнений Определение. Векторы где называются линейно зависимыми на интервале , если существуют постоянные числа такие, что при , причем по крайней мере одно из чисел а, не равно нулю. Если тождество (5) справедливо только при то векторы называются линейно независимыми на (а, Ь). Заметим, что одно векторное тождество (5) эквивалентно п тождествам: . Определитель называется определителем Вронского системы векторов . Определение.

Пусть имеем линейную однородную систему где -матрица с элементами Система п решений линейной однородной системы (6), линейно независимых на интервале , называется фундаментальной. Теорема 6. Определитель Вронского W(t) фундаментальной на интервале системы решений линейной однородной системы (6) с непрерывными на отрезке а b коэффициентами a-ij<t) отличен от нуля во всех точках интервала (а, 6). Теорема 7 (о структуре общего решения линейной однородной системы).

Общим решением в области линейной однородной системы с непрерывными на отрезке коэффициентами является линейная комбинация п линейно независимых на интервале а решений системы (6): произвольные постоянные числа). Пример. Система имеет, как нетрудно проверить, решения Эш решения линейно независимы, так как определитель Вронского отличен от нуля: ‘ Общее решение системы имеет вид или — произвольные постоянные). 3.1.

Фундаментальная матрица

Квадратная матрица столбцами которой являются линейно независимые решения системы (6), называется фундаментальной матрицей этой системы. Нетрудно проверить, что фундаментальная матрица удовлетворяет матричному уравнению Если X(t) — фундаментальная матрица системы (6), то общее решение системы можно представить в виде — постоянная матрица-столбец с произвольными элементами. Полагая в имеем откуда следовательно, Матрица называется матрицей Коши. С ее помощью решение системы (6) можно представить так: Теорема 8 (о структуре общего решения линейной неоднородной системы дифференциальных уравнений).

Общее решение в области линейной неоднородной системы дифференциальных уравнений с непрерывными на отрезке коэффициентами и правыми частями fi(t) равно сумме общего решения соответствующей однородной системы и какого-нибудь частного решения X(t) неоднородной системы (2): 3.2. Метод вариации постоянных Если известно общее решение линейной однородной системы (6), то частное решение неоднородной системы можно находить методом вариации постоянных (метод Лаг-ранжа). Пусть есть общее решение однородной системы (6), тогда dXk причем решения линейно независимы.

Будем искать частное решение неоднородной системы где — неизвестные функции от t. Дифференцируя имеем Подставляя получаем Так как то для определения получаем систему или, в развернутом виде, Система (10) есть линейная алгебраическая система относительно 4(0 > определителем которой является определитель Вронского W(t) фундаментальной системы решений . Этот определитель отличен от нуля всюду на интервале так что система ) имеет единственное решение где МО — известные непрерывные функции. Интегрируя последние соотношения, находим Подставляя эти значения , находим частное решение системы (2): (здесь под символом понимается одна из первообразных для функции §4.

Системы линейных дифференциальных уравнений с постоянными коэффициентами Рассмотрим линейную систему дифференциальных уравнений в которой все коэффициенты — постоянные. Чаще всего такая система интегрируется сведением ее к одному уравнению более высокого порядка, причем это уравнение будет также линейным с постоянными коэффициентами. Другой эффективный метод интегрирования систем с постоянными коэффициентами — метод преобразования Лапласа.

Мы рассмотрим еще метод Эйлера интегрирования линейных однородных систем дифференциальных уравнений с постоянными коэффициентами. Он состоит в следующем. Метод Эйлера Будем искать решение системы где — постоянные. Подставляя ж* в форме (2) в систему (1), сокращая на е* и перенося все члены в одну часть равенства, получаем систему Для того, чтобы эта система (3) линейных однородных алгебраических уравнений с п неизвестными ап имела нетривиальное решение, необходимо и достаточно, чтобы ее определитель был равен нулю: Уравнение (4) называется характеристическим.

В его левой части стоит многочлен относительно А степени п. Из этого уравнения определяются те значения А, при которых система (3) имеет нетривиальные решения а, Если все корни характеристического уравнения (4) различны, то, подставляя их по очереди в систему (3), находим соответствующие им нетривиальные решения , этой системы и, следовательно, находим п решений исходной системы дифференциальных уравнений (1) в виде где второй индекс указывает номер решения, а первый — номер неизвестной функции.

Построенные таким образом п частных решений линейной однородной системы (1) образуют, как можно проверить, фундаментальную систему решений этой системы. Следовательно, общее решение однородной системы дифференциальных уравнений (1) имеет вид — произвольные постоянные. Случай, когда характеристическое уравнение имеет кратные корни, мы рассматривать не будем. М Ищем решение в виде Характеристическое уравнение Система (3) для определения 01,02 выглядит так: Подставляя получаем откуда Следовательно, Полагая находим поэтому Общее решение данной системы:

Методы интегрирования

Метод исключения Метод интегрируемых комбинаций Системы линейных дифференциальных уравнений Фундаментальная матрица Метод вариации постоянных Системы линейных дифференциальных уравнений с постоянными коэффициентами Матричный метод Изложим еще матричный метод интегрирования однородной системы (1).

Запишем систему (1) в виде матрица с постоянными действительными элементами a,j. Напомним некоторые понятия из линейной алгебры. Вектор g Ф О называется собственным вектором матрицы А, если Число А называется собственным значением матрицы А, отвечающим собственному вектору g, и является корнем характеристического уравнения где I — единичная матрица. Будем предполагать, что все собственные значения А„ матрицы А различны.

В этом случае собственные векторы линейно независимы и существует п х п-матрица Т, приводящая матрицу А к диагональному виду, т. е. такая, что Столбцами матрицы Т являются координаты собственных векторов Введем еще следующие понятия. Пусть В(£) — п х n-матрица, элементы 6,;(0 которой суть функции аргумента t, определенные на множестве Матрица B(f) называется непрерывной на П, если непрерывны на Q все ее элементы 6,j(f). Матрица В(*) называется дифференцируемой на П, если дифференцируемы на Q все элементы этой матрицы.

При этом производной ^р- матрицы В(*) называется матрица, элементами которой являются производные —соответствующих элементов матрицы В(*). Пусть B — вектор-столбец. Учитывая правила алгебры матриц, непосредственной проверкой убеждаемся в справедливости формулы В частности, если В — постоянная матрица, то так как ^ есть нуль-матрица. Теорема 9. Если собственные значения матрицы А различны, то общее решение системы (7) имеет вид где — собственные векторы-столбцы матрицы произвольные постоянные числа. Введем новый неизвестный вектор-столбец по формуле где Т — матрица, приводящая матрицу А к диагональному виду.

Подставляя получим систему Умножая обе части последнего соотношения слева на Т 1 и учитывая, что Т 1 AT = Л, придем к системе Мы получили систему из п независимых уравнений, которая без труда интегрируется: (12) Здесь — произвольные постоянные числа. Вводя единичные п-мерные векторы-столбцы решение можно представить в виде Так как столбцы матрицы Т есть собственные векторы матрицы собственный вектор матрицы А. Поэтому, подставляя (13) в (11), получим формулу (10): Таким образом, если матрица А системы дифференциальных уравнений (7) имеет различные собственные значения, для получения общего решения этой системы:

1) находим собственные значения „ матрицы как корни алгебраического уравнения 2) находим все собственные векторы 3) выписываем общее решение системы дифференциальных уравнений (7) по формуле (10). Пример 2. Решить систему Матричный метод 4 Матрица А системы имеет вид 1) Составляем характеристическое уравнение Корни характеристического уравнения . 2) Находим собственные векторы Для А = 4 получаем систему откуда = 0|2, так что Аналогично для А = 1 находим I 3)

Пользуясь формулой (10), получаем общее решение системы дифференциальных уравнений Корни характеристического уравнения могут быть действительными и комплексными. Так как по предположению коэффициенты ау системы (7) действительные, то характеристическое уравнение будет иметь действительные коэффициенты. Поэтому наряду с комплексным корнем А оно будет иметь и корень *, комплексно сопряженный с А. Нетрудно показать, что если g — собственный вектор, отвечающий собственному значению А, то А* — тоже собственное значение, которому отвечает собственный вектор g*, комплексно сопряженный с g.

При комплексном Л решение системы (7) taioKe будет комплексным. Действительная часть и мнимая часть этого решения являются решениями системы (7). Собственному значению Л* будет отвечать пара действительных решений . та же пара, что и для собственного значения Л. Таким образом, паре А, А* комплексно сопряженных собственных значений отвечает пара действительных решений системы (7) дифференциальных уравнений. Пусть — действительные собственные значения, комплексные собственные значения. Тогда всякое действительное решение системы (7) имеет вид где с, — произвольные постоянные.

Пример 3. Решить систему -4 Матрица системы 1) Характеристическое уравнение системы Его корни Собственные векторы матрицы 3) Решение системы где — произвольные комплексные постоянные. Найдем действительные решения системы. Пользуясь формулой Эйлера получаем Следовательно, всякое действительное решение системы имеет вид произвольные действительные числа. Упражнения Методом исключения проинтегрируйте системы: Методом интефируемых комбинаций проинтефируйте системы: Матричным способом проинтефируйте системы: Ответы

Присылайте задания в любое время дня и ночи в ➔ Фундаментальная матрица системы дифференциальных уравненийФундаментальная матрица системы дифференциальных уравнений

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ

Системы дифференциальных уравнений с примерами решения и образцами выполнения

Также как и обыкновенные дифференциальные уравнения, системы дифференциальных уравнений применяются для описания многих процессов реальной действительности. В частности, к ним относятся различного рода физические и химические процессы, процессы нефте- и газодобычи, геологии, экономики и т.д. Действительно, если некоторые физические величины (перемещение тела, пластовое давление жидкости в фиксированной точке с тремя координатами, концентрация веществ, объемы продаж продуктов) оказываются меняющимися со временем под воздействием тех или иных факторов, то, как правило, закон их изменения по времени описывается именно системой дифференциальных уравнений, т.е. системой, связывающей исходные переменные как функции времени и производные этих функций. Независимой переменной в системе дифференциальных уравнений может выступать не только время, но и другие физические величины: координата, цена продукта и т.д.

Фундаментальная матрица системы дифференциальных уравнений

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение систем дифференциальных уравнений

К системе дифференциальных уравнений приводит уже простейшая задача динамики точки: даны силы, действующие на материальную точку; найти закон движения, т. е. найти функции Фундаментальная матрица системы дифференциальных уравненийвыражающие зависимость координат движущейся точки от времени. Система, которая при этом получается, в общем случае имеет вид

Фундаментальная матрица системы дифференциальных уравнений

Здесь x, у, z — координаты движущейся точки, t — время, f, g, h — известные функции своих аргументов.

Система вида (1) называется канонической. Обращаясь к общему случаю системы т дифференциальных уравнений с т неизвестными функциями Фундаментальная матрица системы дифференциальных уравненийаргумента t, назовем канонической систему вида

Фундаментальная матрица системы дифференциальных уравнений

разрешенную относительно старших производных. Система уравнений первого порядка, разрешенных относительно производных от искомых функций,

Фундаментальная матрица системы дифференциальных уравнений

Если Фундаментальная матрица системы дифференциальных уравненийв (2) принять за новые вспомогательные функции, то общую каноническую систему (2) можно заменить эквивалентной ей нормальной системой, состоящей из Фундаментальная матрица системы дифференциальных уравненийуравнений. Поэтому достаточно рассматривать лишь нормальные системы.

Например, одно уравнение

Фундаментальная матрица системы дифференциальных уравнений

является мастным случаем канонической системы. Положив Фундаментальная матрица системы дифференциальных уравненийв силу исходного уравнения будем иметь

Фундаментальная матрица системы дифференциальных уравнений

В результате получаем нормальную систему уравнений

Фундаментальная матрица системы дифференциальных уравнений

эквивалентную исходному уравнению.

Определение:

Решением нормальной системы (3) на интервале (а, Ь) изменения аргумента t называется всякая система n функций

Фундаментальная матрица системы дифференциальных уравнений

дифференцируемых на интервале а Фундаментальная матрица системы дифференциальных уравнений

Теорема:

Существования и единственности решения задачи Коши. Пусть имеем нормальную систему дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

и пусть функции Фундаментальная матрица системы дифференциальных уравненийопределены в некоторой (n + 1) — мерной области D изменения переменных Фундаментальная матрица системы дифференциальных уравненийЕсли существует окрестность Фундаментальная матрица системы дифференциальных уравненийточки Фундаментальная матрица системы дифференциальных уравненийв которой функции fi непрерывны по совокупности аргументов и имеют ограниченные частные производные по переменным Фундаментальная матрица системы дифференциальных уравненийто найдется интервал Фундаментальная матрица системы дифференциальных уравненийизменения t, на котором существует единственное решение нормальной системы (3), удовлетворяющее начальным условиям

Фундаментальная матрица системы дифференциальных уравнений

Определение:

Система n функций

Фундаментальная матрица системы дифференциальных уравнений

зависящих от t и n произвольных постоянных Фундаментальная матрица системы дифференциальных уравненийназывается общим решением нормальной системы (3) в некоторой области Фундаментальная матрица системы дифференциальных уравненийсуществования и единственности решения задачи Коши, если

1) при любых допустимых значениях Фундаментальная матрица системы дифференциальных уравненийсистема функций (6) обращает уравнения (3) в тождества,

2) в области Фундаментальная матрица системы дифференциальных уравненийфункции (6) решают любую задачу Коши.

Решения, получающиеся из общего при конкретных значениях постоянных Фундаментальная матрица системы дифференциальных уравненийназываются частными решениями.

Обратимся для наглядности к нормальной системе двух уравнений,

Фундаментальная матрица системы дифференциальных уравнений

Будем рассматривать систему значений t, x1, х2 как прямоугольные декартовы координаты точки трехмерного пространства, отнесенного к системе координат Фундаментальная матрица системы дифференциальных уравненийРешение

Фундаментальная матрица системы дифференциальных уравнений

системы (7), принимающее при Фундаментальная матрица системы дифференциальных уравненийзначения Фундаментальная матрица системы дифференциальных уравненийопределяет в пространстве некоторую линию, проходящую через точку Фундаментальная матрица системы дифференциальных уравненийЭта линия называется интегральной кривой нормальной системы (7). Задача Коши для системы (7) получает следующую геометрическую формулировку: в пространстве переменных t, x1, х2 найти интегральную кривую, проходящую через данную точку Фундаментальная матрица системы дифференциальных уравнений(рис. 1). Теорема 1 устанавливает существование и единственность такой кривой.

Фундаментальная матрица системы дифференциальных уравнений

Нормальной системе (7) и ее решению можно придать еще такое истолкование: будем независимую переменную t рассматривать как параметр, а решение

Фундаментальная матрица системы дифференциальных уравнений

системы — как параметрические уравнения кривой на плоскости Фундаментальная матрица системы дифференциальных уравненийЭту плоскость переменных х1х2 называют фазовой плоскостью. В фазовой плоскости решение Фундаментальная матрица системы дифференциальных уравненийсистемы (7), принимающее при t = to начальные значения Фундаментальная матрица системы дифференциальных уравненийизображается кривой АВ, проходящей через точку Фундаментальная матрица системы дифференциальных уравнений(рис. 2). Эту кривую называют траекторией системы (фазовой траекторией). Траектория системы (7) есть проекция интегральной кривой на фазовую плоскость. По интегральной кривой фазовая траектория определяется однозначно, но не наоборот.

Методы интегрирования систем дифференциальных уравнений

Метод исключения

Один из методов интегрирования — метод исключения. Частным случаем канонической системы является одно уравнение n-го порядка, разрешенное относительно старшей производной

Фундаментальная матрица системы дифференциальных уравнений

Введя новые функции Фундаментальная матрица системы дифференциальных уравненийзаменим это уравнение следующей нормальной системой n уравнений:

Фундаментальная матрица системы дифференциальных уравнений

т. е. одно уравнение n-го порядка эквивалентно нормальной системе (1)

Можно утверждать и обратное, что, вообще говоря, нормальная система п уравнений первого порядка эквивалентна одному уравнению порядка n. На этом и основан метод исключения для интегрирования систем дифференциальных уравнений.

Делается это так. Пусть имеем нормальную систему

Фундаментальная матрица системы дифференциальных уравнений

Продифференцируем первое из уравнений (2) по t. Имеем

Фундаментальная матрица системы дифференциальных уравнений

Заменяя в правой части производные Фундаментальная матрица системы дифференциальных уравненийих выражениями Фундаментальная матрица системы дифференциальных уравненийполучим

Фундаментальная матрица системы дифференциальных уравнений

Уравнение (3) снова дифференцируем по t. Принимая во внимание систему (2), получим

Фундаментальная матрица системы дифференциальных уравнений

Продолжая этот процесс, найдем

Фундаментальная матрица системы дифференциальных уравнений

Предположим, что определитель

Фундаментальная матрица системы дифференциальных уравнений

(якобиан системы функций Фундаментальная матрица системы дифференциальных уравненийотличен от нуля при рассматриваемых значениях Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Тогда система уравнений, составленная из первого уравнения системы (2) и уравнений

Фундаментальная матрица системы дифференциальных уравнений

будет разрешима относительно неизвестных Фундаментальная матрица системы дифференциальных уравненийПри этом Фундаментальная матрица системы дифференциальных уравненийвыразятся через Фундаментальная матрица системы дифференциальных уравнений

Внося найденные выражения в уравнение

Фундаментальная матрица системы дифференциальных уравнений

получим одно уравнение n-го порядка

Фундаментальная матрица системы дифференциальных уравнений

Из самого способа его построения следует, что если Фундаментальная матрица системы дифференциальных уравненийесть решения системы (2), то функция х1(t) будет решением уравнения (5).

Обратно, пусть Х1(t) — решение уравнения (5). Дифференцируя это решение по t, вычислим Фундаментальная матрица системы дифференциальных уравненийи подставим найденные значения как известные функции

Фундаментальная матрица системы дифференциальных уравнений

от t в систему уравнений

Фундаментальная матрица системы дифференциальных уравнений

По предположению эту систему можно разрешить относительно Фундаментальная матрица системы дифференциальных уравненийт. е найти Фундаментальная матрица системы дифференциальных уравненийкак функции от t.

Можно показать, что так построенная система функций

Фундаментальная матрица системы дифференциальных уравнений

составляет решение системы дифференциальных уравнений (2). Пример:

Требуется проинтегрировать систему

Фундаментальная матрица системы дифференциальных уравнений

Дифференцируя первое уравнение системы, имеем

Фундаментальная матрица системы дифференциальных уравнений

откуда, используя второе уравнение, получаем

Фундаментальная матрица системы дифференциальных уравнений

— линейное дифференциальное уравнение второго порядка с постоянными коэффициентами с одной неизвестной функцией. Его общее решение имеет вид

Фундаментальная матрица системы дифференциальных уравнений

В силу первого уравнения системы находим функцию

Фундаментальная матрица системы дифференциальных уравнений

Найденные функции x(t), y(t), как легко проверить, при любых значениях С1 и С2 удовлетворяют заданной системе.

Функции x(t), y(t) можно представить в виде

Фундаментальная матрица системы дифференциальных уравнений

откуда видно, что интегральные кривые системы (6) — винтовые линии с шагом Фундаментальная матрица системы дифференциальных уравненийи с общей осью х = у = 0, которая также является интегральной кривой (рис. 3).

Фундаментальная матрица системы дифференциальных уравнений

Исключая в формулах (7) параметр t, получаем уравнение

Фундаментальная матрица системы дифференциальных уравнений

так что фазовые траектории данной системы суть окружности с центром в начале координат — проекции винтовых линий на плоскость хОу.

При А = 0 фазовая траектория состоит из одной точки х = 0, у = 0, называемой точкой покоя системы.

Замечание:

Может оказаться, что функции Фундаментальная матрица системы дифференциальных уравненийнельзя выразить через Фундаментальная матрица системы дифференциальных уравненийТогда уравнения n-го порядка, эквивалентного исходной системе, мы не получим. Вот простой пример. Систему уравнений

Фундаментальная матрица системы дифференциальных уравнений

нельзя заменить эквивалентным уравнением второго порядка относительно х1 или x2. Эта система составлена из пары уравнений 1-го порядка, каждое из которых интегрируется независимо, что дает

Фундаментальная матрица системы дифференциальных уравнений

Метод интегрируемых комбинаций

Интегрирование нормальных систем дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

иногда осуществляется методом интегрируемых комбинаций.

Интегрируемой комбинацией называется дифференциальное уравнение, являющееся следствием уравнений (8), но уже легко интегрирующееся.

Пример:

Фундаментальная матрица системы дифференциальных уравнений

Складывая почленно данные уравнения, находим одну интегрируемую комбинацию:

Фундаментальная матрица системы дифференциальных уравнений

Вычитая почленно из первого уравнения системы второе, получаем вторую интегрируемую комбинацию:

Фундаментальная матрица системы дифференциальных уравнений

Мы нашли два конечных уравнения

Фундаментальная матрица системы дифференциальных уравнений

из которых легко определяется общее решение системы:

Фундаментальная матрица системы дифференциальных уравнений

Одна интегрируемая комбинация дает возможность получить одно уравнение

Фундаментальная матрица системы дифференциальных уравнений

связывающее независимую переменную t и неизвестные функции Фундаментальная матрица системы дифференциальных уравненийТакое конечное уравнение называется первым интегралом системы (8). Иначе: первым интегралом системы дифференциальных уравнений (8) называется дифференцируемая функция Фундаментальная матрица системы дифференциальных уравненийне равная тождественно постоянной, но сохраняющая постоянное значение на любой интегральной кривой этой системы.

Если найдено п первых интегралов системы (8) и все они независимы, т. е. якобиан системы функций Фундаментальная матрица системы дифференциальных уравненийотличен от нуля:

Фундаментальная матрица системы дифференциальных уравнений

то задача интефирования системы (8) решена (так как из системы

Фундаментальная матрица системы дифференциальных уравнений

определяются все неизвестные функции Фундаментальная матрица системы дифференциальных уравнений

Системы линейных дифференциальных уравнений

Система дифференциальных уравнений называется линейной, если она линейна относительно неизвестных функций и их производных, входящих в уравнение. Система n линейных уравнений первого порядка, записанная в нормальной форме, имеет вид

Фундаментальная матрица системы дифференциальных уравнений

или, в матричной форме,

Фундаментальная матрица системы дифференциальных уравнений

Теорема:

Если все функции Фундаментальная матрица системы дифференциальных уравненийнепрерывны на отрезке Фундаментальная матрица системы дифференциальных уравненийто в достаточно малой окрестности каждой точки Фундаментальная матрица системы дифференциальных уравненийгде Фундаментальная матрица системы дифференциальных уравненийвыполнены условия теоремы существования и единственности решения задачи Коши, следовательно, через каждую такую точку проходит единственная интегральная кривая системы (1).

Действительно, в таком случае правые части системы (1) непрерывны по совокупности аргументов t, Фундаментальная матрица системы дифференциальных уравненийи их частные производные по Фундаментальная матрица системы дифференциальных уравненийограничены, так как эти производные равны непрерывным на отрезке [а,b] коэффициентам Фундаментальная матрица системы дифференциальных уравнений

Введем линейный оператор

Фундаментальная матрица системы дифференциальных уравнений

Тогда система (2) запишется в виде

Фундаментальная матрица системы дифференциальных уравнений

Если матрица F — нулевая, т. е. Фундаментальная матрица системы дифференциальных уравненийна интервале (а,b), то система (2) называется линейной однородной и имеет вид

Фундаментальная матрица системы дифференциальных уравнений

Приведем некоторые теоремы, устанавливающие свойства решений линейных систем.

Теорема:

Если X(t) является решением линейной однородной системы

Фундаментальная матрица системы дифференциальных уравнений

то cX(t), где с — произвольная постоянная, является решением той же системы.

Теорема:

Фундаментальная матрица системы дифференциальных уравнений

двух решений Фундаментальная матрица системы дифференциальных уравненийоднородной линейной системы уравнений является решением той же системы.

Следствие:

Фундаментальная матрица системы дифференциальных уравнений

с произвольными постоянными коэффициентами сi решений Фундаментальная матрица системы дифференциальных уравненийлинейной однородной системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

является решением той же системы.

Теорема:

Если Фундаментальная матрица системы дифференциальных уравненийесть решение линейной неоднородной системы

Фундаментальная матрица системы дифференциальных уравнений

a Xo(t) — решение соответствующей однородной системы

Фундаментальная матрица системы дифференциальных уравнений

будет решением неоднородной системы Фундаментальная матрица системы дифференциальных уравнений

Действительно, по условию,

Фундаментальная матрица системы дифференциальных уравнений

Пользуясь свойством аддитивности оператора Фундаментальная матрица системы дифференциальных уравненийполучаем

Фундаментальная матрица системы дифференциальных уравнений

Это означает, что сумма Фундаментальная матрица системы дифференциальных уравненийесть решение неоднородной системы уравнений Фундаментальная матрица системы дифференциальных уравнений

Определение:

Фундаментальная матрица системы дифференциальных уравнений

называются линейно зависимыми на интервале a Фундаментальная матрица системы дифференциальных уравнений

при Фундаментальная матрица системы дифференциальных уравненийпричем по крайней мере одно из чисел аi, не равно нулю. Если тождество (5) справедливо только при Фундаментальная матрица системы дифференциальных уравненийто векторы Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравненийназываются линейно независимыми на (а, b).

Заметим, что одно векторное тождество (5) эквивалентно n тождествам:

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

называется определителем Вронского системы векторов Фундаментальная матрица системы дифференциальных уравнений

Определение:

Пусть имеем линейную однородную систему

Фундаментальная матрица системы дифференциальных уравнений

где Фундаментальная матрица системы дифференциальных уравненийматрица с элементами Фундаментальная матрица системы дифференциальных уравненийСистема n решений

Фундаментальная матрица системы дифференциальных уравнений

линейной однородной системы (6), линейно независимых на интервале а Фундаментальная матрица системы дифференциальных уравнений

с непрерывными на отрезке Фундаментальная матрица системы дифференциальных уравненийкоэффициентами Фундаментальная матрица системы дифференциальных уравненийявляется линейная комбинация п линейно независимых на интервале а Фундаментальная матрица системы дифференциальных уравнений

(Фундаментальная матрица системы дифференциальных уравнений) — произвольные постоянные числа).

Пример:

Фундаментальная матрица системы дифференциальных уравнений

имеет, как нетрудно проверить, решения

Фундаментальная матрица системы дифференциальных уравнений

Эти решения линейно независимы, так как определитель Вронского отличен от нуля:

Фундаментальная матрица системы дифференциальных уравнений

Общее решение системы имеет вид

Фундаментальная матрица системы дифференциальных уравнений

(с1, с2 — произвольные постоянные).

Фундаментальная матрица

Квадратная матрица

Фундаментальная матрица системы дифференциальных уравнений

столбцами которой являются линейно независимые решения Фундаментальная матрица системы дифференциальных уравненийсистемы (6), называется фундаментальной матрицей этой системы. Нетрудно проверить, что фундаментальная матрица удовлетворяет матричному уравнению

Фундаментальная матрица системы дифференциальных уравнений

Если Х(t) — фундаментальная матрица системы (6), то общее решение системы можно представить в виде

Фундаментальная матрица системы дифференциальных уравнений

— постоянная матрица-столбец с произвольными элементами. Полагая в (7) t = t0, имеем

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Матрица Фундаментальная матрица системы дифференциальных уравненийназывается матрицей Коши. С ее помощью решение системы (6) можно представить так:

Фундаментальная матрица системы дифференциальных уравнений

Теорема:

О структуре общего решения линейной неоднородной системы дифференциальных уравнений. Общее решение в области Фундаментальная матрица системы дифференциальных уравненийлинейной неоднородной системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

с непрерывными на отрезке Фундаментальная матрица системы дифференциальных уравненийкоэффициентами aij(t) и правыми частями fi(t) равно сумме общего решения

Фундаментальная матрица системы дифференциальных уравнений

соответствующей однородной системы и какого-нибудь частного решения Фундаментальная матрица системы дифференциальных уравненийнеоднородной системы (2):

Фундаментальная матрица системы дифференциальных уравнений

Метод вариации постоянных

Если известно общее решение линейной однородной системы (6), то частное решение неоднородной системы можно находить методом вариации постоянных (метод Лагранжа).

Фундаментальная матрица системы дифференциальных уравнений

есть общее решение однородной системы (6), тогда

Фундаментальная матрица системы дифференциальных уравнений

причем решения Xk(t) линейно независимы.

Будем искать частное решение неоднородной системы

Фундаментальная матрица системы дифференциальных уравнений

где Фундаментальная матрица системы дифференциальных уравненийнеизвестные функции от t. Дифференцируя Фундаментальная матрица системы дифференциальных уравненийпо t, имеем

Фундаментальная матрица системы дифференциальных уравнений

Подставляя Фундаментальная матрица системы дифференциальных уравненийв (2), получаем

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

то для определения Фундаментальная матрица системы дифференциальных уравненийполучаем систему

Фундаментальная матрица системы дифференциальных уравнений

или, в развернутом виде,

Фундаментальная матрица системы дифференциальных уравнений

Система (10) есть линейная алгебраическая система относительно Фундаментальная матрица системы дифференциальных уравненийопределителем которой является определитель Вронского W(t) фундаментальной системы решений Фундаментальная матрица системы дифференциальных уравнений. Этот определитель отличен от нуля всюду на интервале a Фундаментальная матрица системы дифференциальных уравнений

где Фундаментальная матрица системы дифференциальных уравнений— известные непрерывные функции. Интегрируя последние соотношения, находим

Фундаментальная матрица системы дифференциальных уравнений

Подставляя эти значения Фундаментальная матрица системы дифференциальных уравненийв (9), находим частное решение системы (2)

Фундаментальная матрица системы дифференциальных уравнений

(здесь под символом Фундаментальная матрица системы дифференциальных уравненийпонимается одна из первообразных для функции Фундаментальная матрица системы дифференциальных уравнений

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Рассмотрим линейную систему дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

в которой все коэффициенты Фундаментальная матрица системы дифференциальных уравнений— постоянные. Чаще всего такая система интегрируется сведением ее к одному уравнению более высокого порядка, причем это уравнение будет также линейным с постоянными коэффициентами. Другой эффективный метод интегрирования систем с постоянными коэффициентами — метод преобразования Лапласа.

Мы рассмотрим еще метод Эйлера интегрирования линейных однородных систем дифференциальных уравнений с постоянными коэффициентами. Он состоит в следующем.

Метод Эйлера

Будем искать решение системы

Фундаментальная матрица системы дифференциальных уравнений

где Фундаментальная матрица системы дифференциальных уравнений— постоянные. Подставляя Xk в форме (2) в систему (1), сокращая на Фундаментальная матрица системы дифференциальных уравненийи перенося все члены в одну часть равенства, получаем систему

Фундаментальная матрица системы дифференциальных уравнений

Для того, чтобы эта система (3) линейных однородных алгебраических уравнений с n неизвестными Фундаментальная матрица системы дифференциальных уравненийимела нетривиальное решение, необходимо и достаточно, чтобы ее определитель был равен нулю:

Фундаментальная матрица системы дифференциальных уравнений

Уравнение (4) называется характеристическим. В его левой части стоит многочлен относительно Фундаментальная матрица системы дифференциальных уравненийстепени n. Из этого уравнения определяются те значения Фундаментальная матрица системы дифференциальных уравнений, при которых система (3) имеет нетривиальные решения Фундаментальная матрица системы дифференциальных уравнений. Если все корни Фундаментальная матрица системы дифференциальных уравненийхарактеристического уравнения (4) различны, то, подставляя их по очереди в систему (3), находим соответствующие им нетривиальные решения Фундаментальная матрица системы дифференциальных уравненийэтой системы n, следовательно, находим п решений исходной системы дифференциальных уравнений (1) в виде

Фундаментальная матрица системы дифференциальных уравнений

где второй индекс указывает номер решения, а первый — номер неизвестной функции. Построенные таким образом п частных решений линейной однородной системы (1)

Фундаментальная матрица системы дифференциальных уравнений

образуют, как можно проверить, фундаментальную систему решений этой системы.

Следовательно, общее решение однородной системы дифференциальных уравнений (1) имеет вид

Фундаментальная матрица системы дифференциальных уравнений

где Фундаментальная матрица системы дифференциальных уравненийпроизвольные постоянные.

Случай, когда характеристическое уравнение имеет кратные корни, мы рассматривать не будем.

Пример:

Фундаментальная матрица системы дифференциальных уравнений

Ищем решение в виде

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

имеет корни Фундаментальная матрица системы дифференциальных уравнений

Система (3) для определения a1, а2 выглядит так:

Фундаментальная матрица системы дифференциальных уравнений

Подставляя в (*) Фундаментальная матрица системы дифференциальных уравненийполучаем

Фундаментальная матрица системы дифференциальных уравнений

откуда а21 = а11. Следовательно,

Фундаментальная матрица системы дифференциальных уравнений

Полагая в Фундаментальная матрица системы дифференциальных уравненийнаходим a22 = — a12, поэтому

Фундаментальная матрица системы дифференциальных уравнений

Общее решение данной системы:

Фундаментальная матрица системы дифференциальных уравнений

Матричный метод

Изложим еще матричный метод интегрирования однородной системы (1). Запишем систему (1) в виде

Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравненийматрица с постоянными действительными элементами Фундаментальная матрица системы дифференциальных уравнений

Напомним некоторые понятия из линейной алгебры. Вектор Фундаментальная матрица системы дифференциальных уравненийназывается собственным вектором матрицы А, если

Фундаментальная матрица системы дифференциальных уравнений

Число Фундаментальная матрица системы дифференциальных уравненийназывается собственным значением матрицы А, отвечающим собственному вектору g, и является корнем характеристического уравнения

Фундаментальная матрица системы дифференциальных уравнений

где I — единичная матрица.

Будем предполагать, что все собственные значения Фундаментальная матрица системы дифференциальных уравненийматрицы А различны. В этом случае собственные векторы g1, g2, …gn линейно независимы и существует Фундаментальная матрица системы дифференциальных уравненийматрица Т, приводящая матрицу А к диагональному виду, т. е. такая, что

Фундаментальная матрица системы дифференциальных уравнений

Столбцами матрицы Т являются координаты собственных векторов g1, g2 …, gn матрицы А.

Введем еще следующие понятия. Пусть В(t) — Фундаментальная матрица системы дифференциальных уравненийматрица, элементы Фундаментальная матрица системы дифференциальных уравненийкоторой суть функции аргумента t, определенные на множестве Фундаментальная матрица системы дифференциальных уравнений. Матрица В(t) называется непрерывной на Фундаментальная матрица системы дифференциальных уравнений, если непрерывны на Фундаментальная матрица системы дифференциальных уравненийвсе ее элементы Фундаментальная матрица системы дифференциальных уравнений. Матрица В(t) называется дифференцируемой на Фундаментальная матрица системы дифференциальных уравнений, если дифференцируемы на Фундаментальная матрица системы дифференциальных уравненийвсе элементы Фундаментальная матрица системы дифференциальных уравненийэтой матрицы. При этом производной матрицы Фундаментальная матрица системы дифференциальных уравненийназывается матрица, элементами которой являются производные Фундаментальная матрица системы дифференциальных уравненийу соответствующих элементов матрицы В(t).

Пусть B(t) — n х n-матрица,

Фундаментальная матрица системы дифференциальных уравнений

— вектор-столбец. Учитывая правила алгебры матриц, непосредственной проверкой убеждаемся в справедливости формулы

Фундаментальная матрица системы дифференциальных уравнений

В частности, если В — постоянная матрица, то

Фундаментальная матрица системы дифференциальных уравнений

так как Фундаментальная матрица системы дифференциальных уравненийесть нуль-матрица.

Теорема:

Если собственные значения Фундаментальная матрица системы дифференциальных уравненийматрицы А различны, то общее решение системы (7) имеет вид

Фундаментальная матрица системы дифференциальных уравнений

где g1, g2,…, gn — собственные векторы-столбцы матрицы А, Фундаментальная матрица системы дифференциальных уравненийпроизвольные постоянные числа.

Введем новый неизвестный вектор-столбец Y(t) по формуле

Фундаментальная матрица системы дифференциальных уравнений

где Т — матрица, приводящая матрицу А к диагональному виду. Подставляя X(t) из (11) в (7), получим систему

Фундаментальная матрица системы дифференциальных уравнений

Умножая обе части последнего соотношения слева на Фундаментальная матрица системы дифференциальных уравненийи учитывая, что Фундаментальная матрица системы дифференциальных уравненийпридем к системе

Фундаментальная матрица системы дифференциальных уравнений

Мы получили систему из n независимых уравнений, которая без труда интегрируется:

Фундаментальная матрица системы дифференциальных уравнений

Здесь Фундаментальная матрица системы дифференциальных уравнений— произвольные постоянные числа.

Вводя единичные n-мерные векторы-столбцы

Фундаментальная матрица системы дифференциальных уравнений

решение Y(t) можно представить в виде

Фундаментальная матрица системы дифференциальных уравнений

В силу (11) Х(t) = TY(t). Так как столбцы матрицы Т есть собственные векторы матрицы Фундаментальная матрица системы дифференциальных уравненийсобственный вектор матрицы А. Поэтому, подставляя (13) в (11), получим формулу (10):

Фундаментальная матрица системы дифференциальных уравнений

Таким образом, если матрица А системы дифференциальных уравнений (7) имеет различные собственные значения, для получения общего решения этой системы:

1) находим собственные значения Фундаментальная матрица системы дифференциальных уравненийматрицы как корни алгебраического уравнения

Фундаментальная матрица системы дифференциальных уравнений

2) находим все собственные векторы g1, g2,…, gn;

3) выписываем общее решение системы дифференциальных уравнений (7) по формуле (10).

Пример:

Фундаментальная матрица системы дифференциальных уравнений

Матрица А системы имеет вид

Фундаментальная матрица системы дифференциальных уравнений

1) Составляем характеристическое уравнение

Фундаментальная матрица системы дифференциальных уравнений

Корни характеристического уравнения Фундаментальная матрица системы дифференциальных уравнений

2) Находим собственные векторы

Фундаментальная матрица системы дифференциальных уравнений

Для Фундаментальная матрица системы дифференциальных уравнений= 4 получаем систему

Фундаментальная матрица системы дифференциальных уравнений

откуда g11 = g12, так что

Фундаментальная матрица системы дифференциальных уравнений

Аналогично для Фундаментальная матрица системы дифференциальных уравнений= 1 находим

Фундаментальная матрица системы дифференциальных уравнений

3) Пользуясь формулой (10), получаем общее решение системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

Корни характеристического уравнения могут быть действительными и комплексными. Так как по предположению коэффициенты Фундаментальная матрица системы дифференциальных уравненийсистемы (7) действительные, то характеристическое уравнение

Фундаментальная матрица системы дифференциальных уравнений

будет иметь действительные коэффициенты. Поэтому наряду с комплексным корнем Фундаментальная матрица системы дифференциальных уравненийоно будет иметь и корень Фундаментальная матрица системы дифференциальных уравнений*, комплексно сопряженный с Фундаментальная матрица системы дифференциальных уравнений. Нетрудно показать, что если g — собственный вектор, отвечающий собственному значению Фундаментальная матрица системы дифференциальных уравнений, то Фундаментальная матрица системы дифференциальных уравнений* — тоже собственное значение, которому отвечает собственный вектор g*, комплексно сопряженный с g.

При комплексном Фундаментальная матрица системы дифференциальных уравненийрешение

Фундаментальная матрица системы дифференциальных уравнений

системы (7) также будет комплексным. Действительная часть

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

этого решения являются решениями системы (7). Собственному значению Фундаментальная матрица системы дифференциальных уравнений* будет отвечать пара действительных решений X1 и -Х2, т. е. та же пара, что и для собственного значения Фундаментальная матрица системы дифференциальных уравнений. Таким образом, паре Фундаментальная матрица системы дифференциальных уравнений, Фундаментальная матрица системы дифференциальных уравнений* комплексно сопряженных собственных значений отвечает пара действительных решений системы (7) дифференциальных уравнений.

Пусть Фундаментальная матрица системы дифференциальных уравнений— действительные собственные значения, Фундаментальная матрица системы дифференциальных уравненийФундаментальная матрица системы дифференциальных уравнений— комплексные собственные значения. Тогда всякое действительное решение системы (7) имеет вид

Фундаментальная матрица системы дифференциальных уравнений

где сi — произвольные постоянные.

Пример:

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений

1) Характеристическое уравнение системы

Фундаментальная матрица системы дифференциальных уравнений

Его корни Фундаментальная матрица системы дифференциальных уравнений

2) Собственные векторы матриц

Фундаментальная матрица системы дифференциальных уравнений

3) Решение системы

Фундаментальная матрица системы дифференциальных уравнений

где а1, а2 — произвольные комплексные постоянные.

Найдем действительные решения системы. Пользуясь формулой Эйлера

Фундаментальная матрица системы дифференциальных уравнений

Следовательно, всякое действительное решение системы имеет

Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений

где с1, с2 — произвольные действительные числа.

Видео:ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Понятие о системах дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Фундаментальная матрица системы дифференциальных уравнений

Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений Фундаментальная матрица системы дифференциальных уравнений

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

📽️ Видео

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Фундаментальная система решений видео-урок!Скачать

Фундаментальная система решений видео-урок!

Нефёдов Н. Н. - Дифференциальные уравнения - Системы линейных уравненийСкачать

Нефёдов Н. Н. - Дифференциальные уравнения - Системы линейных уравнений

ФСР системы линейных уравнений. Алгоритм ГауссаСкачать

ФСР системы линейных уравнений. Алгоритм Гаусса

Фундаментальная система решений для однородной системы линейных уравненийСкачать

Фундаментальная система решений для однородной системы линейных уравнений

2.1 Системы линейных уравнений IСкачать

2.1 Системы линейных уравнений I

ДУ Линейные системыСкачать

ДУ Линейные системы

Линейные системы дифференциальных уравнений с постоянными коэффициентамиСкачать

Линейные системы дифференциальных уравнений с постоянными коэффициентами

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Лекция 3Скачать

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Лекция 3

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 7Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 7

28.11.2023. Лекция 20. Линейные системы дифференциальных уравненийСкачать

28.11.2023. Лекция 20. Линейные системы дифференциальных уравнений

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Лекция 7Скачать

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Лекция 7
Поделиться или сохранить к себе: