Формулы корней уравнения tg x a

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Формулы корней уравнения tg x a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Формулы корней уравнения tg x a

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Формулы корней уравнения tg x a

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Формулы корней уравнения tg x a

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Формулы корней уравнения tg x a

Примеры решения задач

Формулы корней уравнения tg x a

Замечание. Ответ к задаче 1 часто записывают в виде:

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

19.3. Уравнения tg x = a и ctg x = a

Формулы корней уравнения tg x a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Формулы корней уравнения tg x aфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Формулы корней уравнения tg x a

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

таким образом, уравнение ctg x = 0 имеет корни

Формулы корней уравнения tg x a

Примеры решения задач

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Формулы корней уравнения tg x a

Формулы корней уравнения tg x a

Найдите корни уравнения на заданном промежутке (12-13)

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Арктангенс и решение уравнения tg x=a (продолжение)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Формулы корней уравнения tg x a

На этом уроке мы продолжим изучение арктангенса и решение уравнений вида tg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение tgx = aв общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы ответа. В конце урока решим несколько задач с иллюстрацией решений на графике и на круге.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Уравнение. Простейшие тригонометрические уравнения tg х = а и ctg х = а.

Любые корни уравнения tg x = a если х указан в радианах находим из соотношения:

или для х в градусах:

где m изменяется по всем целым числам (m = 0, ± 1, ±2, ±3).

Сходным образом все корни уравнения ctg х = а находим из соотношения:

Проанализируем решение простейших тригонометрических уравнений.

1) Найти корни уравнения tg (30° — х) = Формулы корней уравнения tg x a.

Применив формулу х = arctg а + 180° m, получим:

30° — х = arctg Формулы корней уравнения tg x a + 180° m = 60° + 180° m.

что можно показать, и таким образом:

Применив формулу х = arcctg a + mπ, получим:

2х = π + mπ = (1 + m)π,

Поскольку m может быть любым произвольным целым числом, то полученный результат можно показать и в более упрошенном виде:

📽️ Видео

Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)Скачать

Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)

Простейшее тригонометрическое уравнение tg x = a.Скачать

Простейшее тригонометрическое уравнение tg x = a.

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

10 класс. Решение уравнений tg x =aСкачать

10 класс. Решение уравнений tg x =a

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

§35 Уравнение tg x = aСкачать

§35 Уравнение tg x = a

Тригонометрическое уравнение tg x=a. Часть 13.9. Алгебра 10 классСкачать

Тригонометрическое уравнение tg x=a. Часть 13.9. Алгебра 10 класс

§161 Уравнения вида tg x=aСкачать

§161 Уравнения вида tg x=a

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Простейшее тригонометрическое уравнение tgx=aСкачать

Простейшее тригонометрическое уравнение tgx=a

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Тригонометрические уравнения с помощью окружности. tg x =aСкачать

Тригонометрические уравнения с помощью окружности. tg x =a

Уравнение sinx=aСкачать

Уравнение sinx=a

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Решение тригонометрических уравнений (тангенс) . tg x = aСкачать

Решение тригонометрических уравнений (тангенс) . tg x = a
Поделиться или сохранить к себе: