Формула разложения на множители биквадратное уравнение

Примеры разложения многочленов на множители

Формула разложения на множители биквадратное уравнение

Видео:Математика| Разложение квадратного трехчлена на множители.Скачать

Математика| Разложение квадратного трехчлена на множители.

Примеры с решением квадратного уравнения

Пример 1.1

Разложить многочлен на множители:
x 4 + x 3 – 6 x 2 .

Выносим x 2 за скобки:
.
Решаем квадратное уравнение x 2 + x – 6 = 0 :
.
Корни уравнения:
, .

Отсюда получаем разложение многочлена на множители:
.

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 – 2 x 4 + 10 x 3 .

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 – 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 – 20 .

Применим формулы:
a 2 + 2 ab + b 2 = ( a + b ) 2 ;
a 2 – b 2 = ( a – b )( a + b ) .

;
.

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Применим формулы:
a 2 + 2 ab + b 2 = ( a + b ) 2 ;
a 2 – b 2 = ( a – b )( a + b ) :

;

;
.

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = – 1 . Делим многочлен на x – (–1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;

;
.

Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 6 (члена без x ). То есть целый корень может быть одним из чисел:
–6, –3, –2, –1, 1, 2, 3, 6 .
Подставляем поочередно эти значения:
(–6) 3 – 6·(–6) 2 + 11·(–6) – 6 = –504 ;
(–3) 3 – 6·(–3) 2 + 11·(–3) – 6 = –120 ;
(–2) 3 – 6·(–2) 2 + 11·(–2) – 6 = –60 ;
(–1) 3 – 6·(–1) 2 + 11·(–1) – 6 = –24 ;
1 3 – 6·1 2 + 11·1 – 6 = 0 ;
2 3 – 6·2 2 + 11·2 – 6 = 0 ;
3 3 – 6·3 2 + 11·3 – 6 = 0 ;
6 3 – 6·6 2 + 11·6 – 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен – третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Пример 3.2

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
–2, –1, 1, 2 .
Подставляем поочередно эти значения:
(–2) 4 + 2·(–2) 3 + 3·(–2) 3 + 4·(–2) + 2 = 6 ;
(–1) 4 + 2·(–1) 3 + 3·(–1) 3 + 4·(–1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .

Итак, мы нашли один корень:
x 1 = –1 .
Делим многочлен на x – x 1 = x – (–1) = x + 1 :
Формула разложения на множители биквадратное уравнение
Тогда,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, –1, –2 .
Подставим x = –1 :
.

Итак, мы нашли еще один корень x 2 = –1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид:
.

Автор: Олег Одинцов . Опубликовано: 18-06-2015

Видео:Разложение квадратного трехчлена на множители. 8 класс.Скачать

Разложение квадратного трехчлена на множители. 8 класс.

Решение уравнений, сводящихся к квадратным

Биквадратные уравнения

Биквадратным уравнением называется уравнение вида:

$$ ax^4+bx^2+c = 0, a neq 0 $$

Алгоритм решения биквадратного уравнения

Шаг 1. Ввести новую переменную: $z = x^2 ge 0$.

Переписать уравнение для новой переменной: $az^2+bz+c = 0$

Шаг 2. Решить полученное квадратное уравнение.

Если $D gt 0$, $z_ = frac<-b pm sqrt> $. Проверить условие $z ≥ 0$, если положительных корней нет, решений нет, переход на шаг 4.

Если D = 0,$z_0 = -frac$. Проверить условие $z ge 0$, если корень отрицательный, решений нет, переход на шаг 4.

Если $D lt 0$, решений нет, переход на шаг 4.

Шаг 3.Если после шага 2 остались положительные корни, найти x: $x = pm sqrt$.

Шаг 4. Работа завершена.

Шаг 1. $z = x^2 ge 0, z^2+7z-30 = 0$

$z_1 = -10 lt 0, z_2 = 3 gt 0 $

Шаг 3. Находим корни из положительного $z: x_ = pm sqrt$

Метод разложения на множители

Решение уравнений, в которые переменная x входит с различными натуральными степенями и вещественными коэффициентами, по существу, является поиском корней многочлена.

Число $x_0$ называют корнем многочлена $P_n (x) = a_n x^n+a_ x^ + ⋯ + a_1 x+a_0$ если $P_n (x_0 ) = 0$.

Для многочлена $P_n$ (x) произвольной степени n справедливо следующее.

Если $x = x_0$ является корнем многочлена $P_n$ (x), то $P_n (x) = (x-x_0) P_ (x)$, где $P_ (x)$ — многочлен степени n-1.

Таким образом, разными способами находя корни и формируя скобки, можно постепенно добиваться понижения степени «оставшегося» многочлена, пока не будут найдены все корни.

При разложении многочлена

  • множители вида (x-a) называют линейными множителями ;
  • множители вида $ (x^2+bx+c)$, для которых $D lt 0$, называют неприводимыми квадратичными множителями .

Любой многочлен $P_n$ (x) можно представить в виде конечного числа линейных и/или неприводимых квадратичных множителей.

Причём, такое представление единственно с точностью до порядка множителей.

Для разложения многочленов на множители применяются разные методы:

  • вынесение общего множителя за скобку (см. §19 справочника для 7 класса);
  • группировка (см. §20 справочника для 7 класса);
  • формулы сокращенного умножения (см. §25 справочника для 7 класса);
  • метод неопределённых коэффициентов;
  • выделение полного квадрата и т.п.

Решим уравнение $2x^3-x^2-8x+4 = 0$.

Раскладываем на множители: $x^2 (2x-1)-4(2x-1) = 0$

$$ (x^2-4)(2x-1) = 0 Rightarrow (x-2)(x+2)(2x-1) = 0 $$

Корни уравнения: $x_1 = 2, x_2 = -2, x_3 = frac$

Метод замены переменной

Замена переменной – это уравнение, с помощью которого можно упростить исходное уравнение, и перейти к решению системы из двух более простых уравнений:

$Исходное quad сложное quad уравнение iff <left< begin Новая quad переменная quad (урав. quad связи quad со quad старой quad переменной \ Исходное quad урав. quad в quad «упрощ.» quad виде end right.>$

Например, для биквадратных уравнений:

$$ ax^4+bx^2+c = 0 iff <left< begin z = x^2 ge 0 \ az^2+bz+c = 0 end right.> $$

Можно предложить аналогичные схемы для других уравнений:

$$ ax+b sqrt+c = 0 iff <left< begin z = sqrt ge 0 \ az^2+bz+c = 0 end right.> $$

И, в общем виде, для любой рациональной степени n:

$$ ax^+bx^n+c = 0 iff <left< begin z = x^n \ az^2+bz+c = 0 end right.> , n in Bbb Q $$

В других случаях замена переменной не настолько очевидна.

Но при удачном выборе, этот метод очень упрощает задачу.

Раскроем скобки:$ x^2-x = frac$. Сделаем замену:

$$ z = frac Rightarrow z(z-2) = 24 Rightarrow z^2-2z-24 = 0 Rightarrow (z-6)(z+4) = 0 Rightarrow left[ begin z_1 = -4 \ z_2 = 6 end right.$$

Возвращаемся к исходной переменной x:

$$ left[ begin x^2-x = -4 \ x^2-x = 6 end right. Rightarrow left[ begin x^2-x+4 = 0 \ x^2-x-6 = 0 end right. Rightarrow left[ begin D lt 0, x in varnothing \ (x-3)(x+2) = 0 end right. Rightarrow left[ begin x_1 = -2 \ x_2 = 3 end right. $$

При использовании метода замены переменной не забывайте возвращаться к исходной переменной.

Выделение полного квадрата

Метод выделения полного квадрата является одним из методов разложения на множители. Его идея – представить многочлен в виде разности квадратов двух других многочленов степенью пониже, и разложить разность на две скобки:

$$ P_n (x) = Q_k^2 (x)-R_m^2 (x) = (Q_k (x)-R_m (x))(Q_k (x)+R_m (x)) $$

Такое разложение не всегда возможно.

Рассмотрим выделение полного квадрата для квадратного трёхчлена:

$$ = a Biggl(x+frac Biggr)^2 — frac = a Biggl(x+ frac Biggr)^2- frac, D = b^2-4ac $$

Нами выделен полный квадрат $(x+frac)^2$.

Данное выражение используется для построения и анализа графиков парабол (см. §28 данного справочника).

А его разложение на две линейные скобки, известное как теорема Виета (см. §26 данного справочника), возможно только при условии $D ge 0$.

Решить уравнение $x^4+4x^2-1 = 0$

Выделим полный квадрат и разложим на множители:

$$ left[ begin x^2+2-sqrt = 0 \ x^2+2+sqrt = 0 end right. Rightarrow left[ begin x^2 = sqrt -2 gt 0 \ x^2 = -(2+sqrt) lt 0 end right. Rightarrow x_1,2 = pm sqrt<sqrt-2> $$

Примеры

Пример 1. Решите биквадратные уравнения:

Делаем замену: $2x^4+7x^2-4 = 0 iff <left< begin z = x^2 ge 0 \ 2z^2+7z-4 = 0 end right.>$

Решаем квадратное уравнение: $D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2$

$$ z = frac = left[ begin z_1 = -4 lt 0 \ z_2 = frac gt 0 end right. $$

Выбираем положительный z и возвращаемся к исходной переменной x:

Делаем замену: $(x+3)^4-10(x+3)^2+24 = 0 iff <left< begin z = (x+3)^2 ge 0 \ z^2-10z+24 = 0 end right.>$

Решаем квадратное уравнение: $z^2-10z+24 = 0 Rightarrow (z-4)(z-6) = 0 Rightarrow left[ begin z_1 = 4 \ z_2 = 6 end right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin (x+3)^2 = 4 \ (x+3)^2 = 6 end right. Rightarrow left[ begin x+3 = pm sqrt \ x+3 = pm sqrt end right. Rightarrow left[ begin x_ = -3 pm 2 \ x_ = -3 pm sqrt end right. Rightarrow left[ begin x_1 = -5 \ x_2 = -1 \ x_ = -3 pm sqrt end right. $$

Пример 2. Решите уравнения аналогичные биквадратным:

Делаем замену: $x+4 sqrt-60 = 0 iff <left< begin z = sqrt ge 0 \ z^2+4z-60 = 0 end right.>$

Решаем квадратное уравнение: $ z^2+4z-60 = 0 Rightarrow (z+10)(z-6) = 0 Rightarrow left[ begin z_1 = -10 \ z_2 = 6 end right.$

Выбираем положительный корень и возвращаемся к исходной переменной:

Делаем замену: $(x-1)^6-7(x-1)^3-8 = 0 iff <left< begin z = (x-1)^3 \ z^2-7z-8 = 0 end right.>$

Решаем квадратное уравнение: $ z^2-7z-8 = 0 Rightarrow (z+1)(z-8) = 0 Rightarrow left[ begin z_1 = -1 \ z_2 = 8 end right.$

При замене куба знак z может быть любым, берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin (x-1)^3 = -1 \ (x-1)^3 = 8 end right. Rightarrow left[ begin x-1 = -1 \ x-1 = 2 end right. Rightarrow left[ begin x_1 = 0 \ x_2 = 3 end right. $$

Пример 3. Решите уравнения с помощью замены переменной:

Заметим, что $(x+3)^2 = x^2+6x+9$. Получаем:

$$ (x^2+6x)^2-(x^2+6x+9) = 33 Rightarrow (x^2+6x)^2-(x^2+6x)-42 = 0 $$

Решаем квадратное уравнение: $ z^2-z-42 = 0 Rightarrow (z+6)(z-7) = 0 Rightarrow left[ begin z_1 = -6 \ z_2 = 7 end right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin x^2+6x = -6 \ x^2+6x = 7 end right. Rightarrow left[ begin x^2+6x+6 = 0 \ x^2+6x-7=0 end right. Rightarrow left[ begin D = 12, x = frac<-6 pm 2 sqrt> \ (x+7)(x-1) = 0 end right. Rightarrow left[ begin x_ = -3 pm sqrt \ x_3 = -7 \ x_4 = 1 end right. $$

Делаем замену: $ frac + frac = 2 iff left[ begin z = x^2+3 ge 3 \ frac + frac = 2 end right.$

Решаем уравнение относительно z:

$$ frac + frac = 2 Rightarrow frac = frac Rightarrow 4(z+1)+5z = 2z(z+1) $$

$$ 2z^2+2z-9z-4 = 0 Rightarrow 2z^2-7z-4 = 0 $$

$$ D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2 $$

$$ z = frac = left[ begin z_1 = — frac lt 3 \ z_2 = 4 gt 3 end right. $$

Выбираем корень больше 3 и возвращаемся к исходной переменной:

$$ x^2+3 = 4 Rightarrow x^2 = 1 Rightarrow x_ = pm 1$$

Пример 4*. Решите уравнения:

Приведём это уравнение к биквадратному.

В линейных множителях (x+a) выберем все a =

Найдем их среднее арифметическое (см. §52 справочника для 7 класса)

Замена переменных $z = x+a_$:

Упрощаем уравнение, используя формулу разности квадратов:

$$ (z^2-9)(z^2-1) = 945 Rightarrow z^4-10z^2+9 = 945 Rightarrow z^4-10z^2-936 = 0 $$

Получили биквадратное уравнение.

Делаем замену: $z^4-10z^2-936 = 0 iff <left< begin t = z^2 ge 0 \ t^2-10t-936 = 0 end right.> $

Решаем квадратное уравнение:

$$ D = 100+4 cdot 936 = 3844 = 62^2, t = frac = left[ begin t_1 = -26 lt 0 \ t_2 = 36 gt 0 end right. $$

Выбираем положительный корень и возвращаемся к переменной z:

$$ z = pm sqrt = pm sqrt = pm 6 $$

Возвращаемся к исходной переменной x:

$$ x = z-4 = pm 6-4 = left[ begin x_1 = -10 \ x_2 = 2 end right. $$

$$ z- frac =2,1 |times z (z neq 0) $$

$$ z^2-2,1z-1 = 0 Rightarrow D = 2,1^2+4 = 8,41 = 2,9^2; z = frac = left[ begin z_1 = -0,4 \ z_2 = 2,5 end right. $$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin frac = -0,4 \ frac = 2,5 end right. Rightarrow left[ begin x^2+1 = -0,4x \x^2+1 = 2,5x end right. Rightarrow left[ begin x^2+0,4x+1 = 0 \ x^2-2,5x+1 = 0 end right. $$

В первом уравнении $D = 0,4^2-4 lt 0$, решений нет.

Во втором уравнении (x-2)(x-1/2) = 0 $Rightarrow left[ begin x_1 = frac \ x_2 = 2 end right.$

Видео:ОГЭ математика. Задача 9. Решаем квадратное уравнение методом разложения на множителиСкачать

ОГЭ математика. Задача 9. Решаем квадратное уравнение методом разложения на множители

Биквадратные уравнения — примеры с решениями

Формула разложения на множители биквадратное уравнение

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Появление методики

Уравнения начали составлять ещё в Древнем Вавилоне. Это было вызвано потребностью находить площади земельных участков, выполнять инженерные работы. Составляли равенства и астрономы, высчитывая расстояния до обнаруживаемых космических тел. Квадратные равенства встречаются в клинописных текстах греков и вавилонян. При этом в этих записях попадаются уравнения, содержащие кубическую или биквадратную степень.

Формула разложения на множители биквадратное уравнение

Несмотря на довольно хорошее развитие алгебры в стародавнее время, находимые упоминания о равенствах содержат только ответы, без указаний способов решений. Задачи с примерами решения биквадратных уравнений встречаются у астронома Ариабхатта и индийского учёного Брахмапутра. Формулы для решения сложных уравнений были изложены в сборнике «Книга абака», написанной в 1202 году итальянцем Фибоначчи. Это издание способствовало развитию математики, в частности, алгебре, в Италии, Германии, Франции. Большой вклад в развитие теории решения внесли и советские учёные-математики: Чеботарев, Четаев.

В XVI веках в Китае был разработан способ нахождения корней равенств высшей степени методом Цинь Цзю-шао, после успешно применявшимся в работах Руффини и Горнера.

Формула разложения на множители биквадратное уравнение

Этот метод использовал способ подбора, но применим был только для случаев, когда в ответе присутствовали только целые числа.

Все способы решения биквадратных уравнений сводились к приведению их к простому квадратному равенству. Была найдена формула, позволяющая решать уравнения с помощью радикалов (корней). Впервые этот метод предложил Виета, но он был рассчитан только на положительные ответы. Итальянские же учёные Тарталья, Кордано, Бомбелли стали учитывать и отрицательные корни. В итоге Декарт, Жирар и Ньютон привели способы решения к современному виду.

Биквадратные выражения стали разделять на полные и неполные. В алгоритмическом языке корнями уравнения начали называть такие значения неизвестной составляющей, при которой решаемое выражение обращается в правильное числовое равенство. То есть чтобы решить задачу, нужно найти всевозможные его корни или доказать, что решения быть не может.

Видео:Разложение кубических выражений на множителиСкачать

Разложение кубических выражений на множители

Основные понятия

Биквадратным уравнением будет называться равенство вида: a*p 4 + b*p 2 + c = 0. Переменные a, b, c могут быть различными числами, при этом A не должно равняться нулю. Символ C называют свободным членом. За P принимают неизвестную переменную, требующую вычисления. Решение уравнений сводится к поиску чисел, которые при подстановке вместо P сделают равенство верным.

Формула разложения на множители биквадратное уравнение

Согласно теореме Безу, число корней многочлена, не равного нулю, не может превосходить величину его степени. При этом любой многочлен с коэффициентами ненулевой степени должен иметь хотя бы одно решение. Тут следует отметить, что корень уравнения может быть комплексным. То есть таким выражением, степень которого равна w x = z, где x — степень, а w — комплексное число. Понятие комплексного числа уже относится к высшей математике. Обозначают его символом (z) 1/x .

Для того чтобы доказать справедливость утверждения Безу, нужно за корень многочлена f принять c1 и составить равенство f = (p — c1) f 1 . Тогда (f 1 Є K [p]), где К — является элементом поля многочлена, но лишь при условии, что f можно разделить на (p — c). Если принять за c2 корень f1, то f1 = (p — c 2)* f 2 (f 2 Є K [ p ]), а это значит что будет верным выражение: f = (p — c 1) * (p — c 2) * f2. Для длинного многочлена вида: f = (p — c 1) * (p — c 2) *…* (p — c) * s, где многочлен (s Є K [p]) не имеет решений.

Так как значения с1, с2… Cm — это все возможные корни f, то для любого поля будет верным: f (p) = (c — c1) * (c — c2)…(c — cm) * s (p). Учитывая, что s (p) не равно нулю, а f (p) = 0 только в том случае, если C равно некоторому числу I, величина корней многочлена f не может быть более значения m.

Таким образом, уравнение может иметь четыре, три, два, или одно решение. При этом есть вероятность, что ответа может совсем и не быть. Принцип, по которому решаются биквадратные уравнения, следующий:

Формула разложения на множители биквадратное уравнение

  • вводят новую переменную y = p 2 ;
  • подставляют используемую переменную в решаемое уравнение;
  • используя методы решения квадратных уравнений, находят корни равенства;
  • найденные величины подставляют в выражение y = p 2 и вычисляют исходные корни.

Квадратные уравнения можно решать любым удобным способом. Типичная схема состоит всего из четырёх шагов и редко вызывает трудности понимания. Пожалуй, сложности могут возникнуть только при нахождении комплексных корней.

Видео:Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

Решение равенств

Без знания методов нахождения корней в квадратных уравнениях решить самостоятельно биквадратное равенство не удастся, так как исходное неравенство в итоге приводится к виду квадратичного. Существует несколько способов, позволяющих быстро найти нужные корни или доказать невозможность существования равенства.

К основным относят:

Формула разложения на множители биквадратное уравнение

  • разложение части уравнения с неизвестной на множители;
  • вынос за скобки полного квадрата;
  • использование специальных формул;
  • графический метод;
  • теорему Виета.

Разложение многочлена на множители основано на группировании и нахождении дискриминанта, то есть знака, по виду которого можно судить о существовании корней. Для решения используется формула: a * p 2 + b * p + c = a * (p — p 1) * (p — p 2), где p и являются корнями уравнения. Этот способ понятен и используется при обучении учащихся решению задач такого типа.

Нахождение корней методом выделения полного квадрата требует опыта использования формул сокращённого умножения, особенно если коэффициентами являются рациональные числа. При решении используется выражение: (a + b) 2 = a 2 + 2* a * b + b 2 и (a — b) 2 = a 2 — 2* a * b + b 2 .

Формула разложения на множители биквадратное уравнение

Существуют специальные формулы нахождения корней квадратного, а значит, и биквадратного уравнения. Выглядят они следующим образом: p 1 = (- b — (b 2 — 4 ac) ½ ) / (2* a) и p 2 = (- b + (b 2 + 4 ac) ½ ) / (2* a). С их помощью можно решить любое уравнение. При этом часто для упрощения решения вводят замену подкоренному выражению (b 2 — 4 ac) обозначая его буквой D — дискриминант. Если D больше нуля, то есть два корня, если меньше — решений нет. Если же D = 0, то существует только один корень.

Формула разложения на множители биквадратное уравнение

Франсуа Виет, проводя математические исследования, смог обнаружить зависимость между корнями уравнения и его коэффициентами. Он установил, что если p1 и p2 являются решениями равенства, то их сумма будет равна второму коэффициенту с другим знаком, а произведение свободному члену. То есть для уравнения вида: p2 +r*p + k = 0, будет справедливо записать, что p1 + p2 = — r, p1 * p2 = k.

Графическое решение требует построения зависимостей. График первой представляет собой параболу, проходящую через начало координат, а второй — прямую. Для того чтобы выделить зависимости используют перенос. В результате получается две функции: y = a * p 2 и y = -(r * p+k). Построение функций и нахождение точек пересечения занимает много времени, поэтому этот метод практически никогда не используется.

Видео:Математика - Разложение трехчлена на множителиСкачать

Математика - Разложение трехчлена на множители

Примеры уравнений

Решения любым из способов имеют свои достоинства и недостатки. По мнению математиков, проще решать уравнения, используя теорему Виета. Например, пусть дано выражение: 4p 4 — 5p + 1 = 0, необходимо найти все бинарные корни. В первую очередь задание нужно привести к виду квадратного равенства. Для этого вводится переменная m = p 2 . Тогда заданное уравнение можно записать как 4 m 2 — 5m + 1 = 0.

Формула разложения на множители биквадратное уравнение

Теперь можно определить дискриминант: D = (-5) 2 — 4 * 4 * 1 = 9. Используя формулы нахождения корней, вычисляют: m1 = (5+3) / 8 = 1, m2 = (5−3) / 8 = ¼. Оба ответа удовлетворяют условию, то есть больше нуля. Подставив полученные значения в исходные выражения, решают неполные квадратные уравнения: p1 = 1; p2 = -1; p3 = ½; p4 = -½. Это цифры и будут искомыми корнями.

Довольно легко решаются уравнения с помощью метода Виета. Вероятность допущения ошибки при определении корней в этом случае стремится к нулю. Например, p 4 — 10 * p 2 + 9 = 0. Чтобы избавиться от четвёртой степени, вводят переменную p. В результате уравнение принимает вид: p 2 — 10 * p 2 + 9 = 0. Теперь можно найти корни, используя обратную теорему Виета: p 1 = 9, p 2 = 1. Так как оба ответа больше нуля, то действительными корнями уравнения будут: p 1 = 3, p 2 = -3, p 3 = 1, p 2 = -1.

Определить, что решать биквадратное уравнение не имеет смысла, можно, используя комбинаторный анализ. Например, p 4 + 11*p 2 + 10 = 0. Для его решения необходимо расписать каждые члены уравнения, используя определение равенства. Так как каждый член p 4 , 11*p 2 , 10 должен быть больше либо равен нулю, то справедливым будет выражение: p 4 + 11*p 2 + 10 > 0.

Формула разложения на множители биквадратное уравнение

Отсюда можно сделать вывод, что p 4 + 11*p 2 + 10 решения не имеет, ведь сумма неотрицательных чисел с положительным не может быть равной нулю. И также можно разложить и доказать бесперспективность поиска для задания с одними минусами, например, -2 p 4 — 45 p 2 — 12 = 0.

Но не всегда уравнение будет иметь четыре корня. Например, p 4 +4 *p 2 21=0. Если принять p 2 = m, квадратное уравнение изменится до вида: m 2 +4*m -21=0, отсюда m 1 = -7, m 2 =3. Теперь нужно решить первоначальное уравнение. Первый ответ не имеет действительных корней, из второго же находят решение. Им будут корни: m 1 = (3) ½ и m 2 = -(3) ½ .

Видео:Теорема Безу и разложение многочлена на множителиСкачать

Теорема Безу и разложение многочлена на множители

Разложение на множители

Самостоятельная работа, дающаяся в школе, часто предполагает решение биквадратных равенств методом разложения на множители. Связанно это с тем, что этот способ позволяет понять принцип нахождения корней для многочлена любой степени.

Формула разложения на множители биквадратное уравнение

Например, нужно разложить уравнение p 4 + p 3 — 6p 2 на множители. В первом действии неизвестное выносится за скобки p 2 (p 2 + p — 6). Во втором, используя формулу нахождения решений, вычисляют: p 1 = (-1 + (1 2 — 4 * (-6)) ½ ) / 2, p 2 = (-1 — (1 2 — 4 * (-6)) ½ ) / 2. Отсюда корни уравнения будут p1 = -3, p2 = 2. Подставив полученные значения в заданное выражение, можно записать: p 2 + p — 6 = (p — p 1)*(p — p 2) = (p + 3) * (p-2).

Пошагово описать разложение многочлена можно на следующем примере: p 4 + 2p 3 + 3p 2 + 4p +2. Решают его в следующей последовательности:

Формула разложения на множители биквадратное уравнение

  1. Предположив, что решение имеет хотя бы один рациональный корень, можно утверждать, что он и будет делителем второго члена. Значит, он будет любым из цифр: -2, -1, 1, 2.
  2. Подставив эти числа в уравнение, получим четыре ответа: 6, 0, 12, 54. То есть одним из корней будет -1.
  3. Разделив многочлен на (p- p1), запишем уравнение p 3 + p 2 + 2p + 2.
  4. Теперь можно составить равенство: p 4 + 2p 3 + 3p 2 + 4p +2 = (p + 1) * (p 3 + p 2 + 2p + 2).
  5. Для решения уравнения, стоящего во второй части произведения, делают предположение, что кубический многочлен имеет целый корень числа 2, а значит, его ответом будет так же -1.
  6. Сгруппировав члены, можно записать: (p + 1) * p 2 + 2 * (p + 1) = (p + 1) * (p 2 + 2).
  7. Из-за того, что уравнение p 2 + 2 = 0 не может иметь действительных корней, разложение будет иметь вид: p 4 + 2p 3 + 3p 2 + 4p +2 = (p + 1) 2 * (p 2 + 2).

Вычисление корней требует внимательности и усердия. Для проверки своих навыков можно использовать онлайн-калькуляторы. Это сервисы, использующие специальное программное обеспечение, часто написанное на Паскале, умеют быстро и безошибочно рассчитывать корни любого примера.

Чтобы решить биквадратное уравнение онлайн, особых умений или знаний правил не нужно. Всё, что требуется — это ввести в предложенную форму параметры решаемого равенства. Из наиболее популярных интернет-порталов выделяют Allcalc. Используя его, можно проверить свои знания, исправить допущенные ошибки при самостоятельном расчёте. Причём свои услуги сайт предлагает совершенно бесплатно.

🎬 Видео

Разложение квадратного трехчлена на множители.Скачать

Разложение квадратного трехчлена на множители.

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Схема Горнера. 10 класс.Скачать

Схема Горнера. 10 класс.

Решение уравнений с помощью разложения на множители.Скачать

Решение уравнений с помощью разложения на множители.

Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

РАЗЛОЖЕНИЕ НА МНОЖИТЕЛИ / Алгебра 7 классСкачать

РАЗЛОЖЕНИЕ НА МНОЖИТЕЛИ / Алгебра 7 класс

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Алгебра 9 класс (Урок№5 - Разложение квадратного трёхчлена на множители)Скачать

Алгебра 9 класс (Урок№5 - Разложение квадратного трёхчлена на множители)

Разложение на множители. ПримерыСкачать

Разложение на множители. Примеры

Алгебра 10 класс (Урок№12 - Решение алгебраических уравнений разложением на множители.)Скачать

Алгебра 10 класс (Урок№12 - Решение алгебраических уравнений разложением на множители.)
Поделиться или сохранить к себе: